The Christensen measurable solutions of a generalization of the Gołąb-Schinzel functional equation
Annales Polonici Mathematici, Tome 64 (1996) no. 3, pp. 195-205.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let K denote the set of all reals or complex numbers. Let X be a topological linear separable F-space over K. The following generalization of the result of C. G. Popa [16] is proved. Theorem. Let n be a positive integer. If a Christensen measurable function f: X → K satisfies the functional equation $f(x + f(x)^ny) = f(x)f(y)$, then it is continuous or the set {x ∈ X : f(x) ≠ 0} is a Christensen zero set.
DOI : 10.4064/ap-64-3-195-205
Keywords: Gołąb-Schinzel functional equation, Christensen measurability, F-space

Janusz Brzdęk 1

1
@article{10_4064_ap_64_3_195_205,
     author = {Janusz Brzd\k{e}k},
     title = {The {Christensen} measurable solutions of a generalization of the {Go{\l}\k{a}b-Schinzel} functional equation},
     journal = {Annales Polonici Mathematici},
     pages = {195--205},
     publisher = {mathdoc},
     volume = {64},
     number = {3},
     year = {1996},
     doi = {10.4064/ap-64-3-195-205},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-64-3-195-205/}
}
TY  - JOUR
AU  - Janusz Brzdęk
TI  - The Christensen measurable solutions of a generalization of the Gołąb-Schinzel functional equation
JO  - Annales Polonici Mathematici
PY  - 1996
SP  - 195
EP  - 205
VL  - 64
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-64-3-195-205/
DO  - 10.4064/ap-64-3-195-205
LA  - en
ID  - 10_4064_ap_64_3_195_205
ER  - 
%0 Journal Article
%A Janusz Brzdęk
%T The Christensen measurable solutions of a generalization of the Gołąb-Schinzel functional equation
%J Annales Polonici Mathematici
%D 1996
%P 195-205
%V 64
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-64-3-195-205/
%R 10.4064/ap-64-3-195-205
%G en
%F 10_4064_ap_64_3_195_205
Janusz Brzdęk. The Christensen measurable solutions of a generalization of the Gołąb-Schinzel functional equation. Annales Polonici Mathematici, Tome 64 (1996) no. 3, pp. 195-205. doi : 10.4064/ap-64-3-195-205. http://geodesic.mathdoc.fr/articles/10.4064/ap-64-3-195-205/

Cité par Sources :