Defining complete and observable chaos
Annales Polonici Mathematici, Tome 64 (1996) no. 2, pp. 139-151
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For a continuous map f from a real compact interval I into itself, we consider the set C(f) of points (x,y) ∈ I² for which $lim inf_{n→∞} |f^n(x) - f^n(y)| = 0$ and $lim sup_{n→∞} |f^n(x) - f^n(y)| > 0$. We prove that if C(f) has full Lebesgue measure then it is residual, but the converse may not hold. Also, if λ² denotes the Lebesgue measure on the square and Ch(f) is the set of points (x,y) ∈ C(f) for which neither x nor y are asymptotically periodic, we show that λ²(C(f)) > 0 need not imply λ²(Ch(f)) > 0. We use these results to propose some plausible definitions of "complete" and "observable" chaos.
Keywords:
chaos in the sense of Li and Yorke, dense chaos, generic chaos, full chaos, scrambled set
Affiliations des auteurs :
Víctor López 1
@article{10_4064_ap_64_2_139_151,
author = {V{\'\i}ctor L\'opez},
title = {Defining complete and observable chaos},
journal = {Annales Polonici Mathematici},
pages = {139--151},
publisher = {mathdoc},
volume = {64},
number = {2},
year = {1996},
doi = {10.4064/ap-64-2-139-151},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-64-2-139-151/}
}
Víctor López. Defining complete and observable chaos. Annales Polonici Mathematici, Tome 64 (1996) no. 2, pp. 139-151. doi: 10.4064/ap-64-2-139-151
Cité par Sources :