Defining complete and observable chaos
Annales Polonici Mathematici, Tome 64 (1996) no. 2, pp. 139-151.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For a continuous map f from a real compact interval I into itself, we consider the set C(f) of points (x,y) ∈ I² for which $lim inf_{n→∞} |f^n(x) - f^n(y)| = 0$ and $lim sup_{n→∞} |f^n(x) - f^n(y)| > 0$. We prove that if C(f) has full Lebesgue measure then it is residual, but the converse may not hold. Also, if λ² denotes the Lebesgue measure on the square and Ch(f) is the set of points (x,y) ∈ C(f) for which neither x nor y are asymptotically periodic, we show that λ²(C(f)) > 0 need not imply λ²(Ch(f)) > 0. We use these results to propose some plausible definitions of "complete" and "observable" chaos.
DOI : 10.4064/ap-64-2-139-151
Keywords: chaos in the sense of Li and Yorke, dense chaos, generic chaos, full chaos, scrambled set

Víctor López 1

1
@article{10_4064_ap_64_2_139_151,
     author = {V{\'\i}ctor L\'opez},
     title = {Defining complete and observable chaos},
     journal = {Annales Polonici Mathematici},
     pages = {139--151},
     publisher = {mathdoc},
     volume = {64},
     number = {2},
     year = {1996},
     doi = {10.4064/ap-64-2-139-151},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-64-2-139-151/}
}
TY  - JOUR
AU  - Víctor López
TI  - Defining complete and observable chaos
JO  - Annales Polonici Mathematici
PY  - 1996
SP  - 139
EP  - 151
VL  - 64
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-64-2-139-151/
DO  - 10.4064/ap-64-2-139-151
LA  - en
ID  - 10_4064_ap_64_2_139_151
ER  - 
%0 Journal Article
%A Víctor López
%T Defining complete and observable chaos
%J Annales Polonici Mathematici
%D 1996
%P 139-151
%V 64
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-64-2-139-151/
%R 10.4064/ap-64-2-139-151
%G en
%F 10_4064_ap_64_2_139_151
Víctor López. Defining complete and observable chaos. Annales Polonici Mathematici, Tome 64 (1996) no. 2, pp. 139-151. doi : 10.4064/ap-64-2-139-151. http://geodesic.mathdoc.fr/articles/10.4064/ap-64-2-139-151/

Cité par Sources :