Convergence results for unbounded solutions of first order non-linear differential-functional equations
Annales Polonici Mathematici, Tome 64 (1996) no. 1, pp. 1-16.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider the Cauchy problem in an unbounded region for equations of the type either $D_{t}z(t,x) = f(t,x,z(t,x),z_{(t,x)},D_{x}z(t,x))$ or $D_{t}z(t,x)= f(t,x,z(t,x),z,D_{x}z(t,x))$. We prove convergence of their difference analogues by means of recurrence inequalities in some wide classes of unbounded functions.
DOI : 10.4064/ap-64-1-1-16
Keywords: error estimates, recurrence inequalities, difference scheme

Henryk Leszczyński 1

1
@article{10_4064_ap_64_1_1_16,
     author = {Henryk Leszczy\'nski},
     title = {Convergence results for unbounded solutions of first order non-linear differential-functional equations},
     journal = {Annales Polonici Mathematici},
     pages = {1--16},
     publisher = {mathdoc},
     volume = {64},
     number = {1},
     year = {1996},
     doi = {10.4064/ap-64-1-1-16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-64-1-1-16/}
}
TY  - JOUR
AU  - Henryk Leszczyński
TI  - Convergence results for unbounded solutions of first order non-linear differential-functional equations
JO  - Annales Polonici Mathematici
PY  - 1996
SP  - 1
EP  - 16
VL  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-64-1-1-16/
DO  - 10.4064/ap-64-1-1-16
LA  - en
ID  - 10_4064_ap_64_1_1_16
ER  - 
%0 Journal Article
%A Henryk Leszczyński
%T Convergence results for unbounded solutions of first order non-linear differential-functional equations
%J Annales Polonici Mathematici
%D 1996
%P 1-16
%V 64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-64-1-1-16/
%R 10.4064/ap-64-1-1-16
%G en
%F 10_4064_ap_64_1_1_16
Henryk Leszczyński. Convergence results for unbounded solutions of first order non-linear differential-functional equations. Annales Polonici Mathematici, Tome 64 (1996) no. 1, pp. 1-16. doi : 10.4064/ap-64-1-1-16. http://geodesic.mathdoc.fr/articles/10.4064/ap-64-1-1-16/

Cité par Sources :