Convergence results for unbounded solutions of first order non-linear differential-functional equations
Annales Polonici Mathematici, Tome 64 (1996) no. 1, pp. 1-16
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider the Cauchy problem in an unbounded region for equations of the type either $D_{t}z(t,x) = f(t,x,z(t,x),z_{(t,x)},D_{x}z(t,x))$ or $D_{t}z(t,x)= f(t,x,z(t,x),z,D_{x}z(t,x))$. We prove convergence of their difference analogues by means of recurrence inequalities in some wide classes of unbounded functions.
Keywords:
error estimates, recurrence inequalities, difference scheme
Affiliations des auteurs :
Henryk Leszczyński 1
@article{10_4064_ap_64_1_1_16,
author = {Henryk Leszczy\'nski},
title = {Convergence results for unbounded solutions of first order non-linear differential-functional equations},
journal = {Annales Polonici Mathematici},
pages = {1--16},
year = {1996},
volume = {64},
number = {1},
doi = {10.4064/ap-64-1-1-16},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-64-1-1-16/}
}
TY - JOUR AU - Henryk Leszczyński TI - Convergence results for unbounded solutions of first order non-linear differential-functional equations JO - Annales Polonici Mathematici PY - 1996 SP - 1 EP - 16 VL - 64 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-64-1-1-16/ DO - 10.4064/ap-64-1-1-16 LA - en ID - 10_4064_ap_64_1_1_16 ER -
%0 Journal Article %A Henryk Leszczyński %T Convergence results for unbounded solutions of first order non-linear differential-functional equations %J Annales Polonici Mathematici %D 1996 %P 1-16 %V 64 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/ap-64-1-1-16/ %R 10.4064/ap-64-1-1-16 %G en %F 10_4064_ap_64_1_1_16
Henryk Leszczyński. Convergence results for unbounded solutions of first order non-linear differential-functional equations. Annales Polonici Mathematici, Tome 64 (1996) no. 1, pp. 1-16. doi: 10.4064/ap-64-1-1-16
Cité par Sources :