Equations defining reducible Kummer surfaces in ℙ⁵
Annales Polonici Mathematici, Tome 63 (1996) no. 1, pp. 51-62.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Principally polarized abelian surfaces are the Jacobians of smooth genus 2 curves or of stable genus 2 curves of special type. In [S] we studied equations describing Kummer surfaces in the case of an irreducible principal polarization on the abelian surface. The aim of this note is to give a treatment of the second case. We describe intermediate Kummer surfaces coming from abelian surfaces carrying a product principal polarization. In Proposition 12 we give explicit equations of these surfaces in ℙ⁵.
DOI : 10.4064/ap-63-1-51-62
Keywords: Kummer surfaces, intersections of quadrics

Tomasz Szemberg 1

1
@article{10_4064_ap_63_1_51_62,
     author = {Tomasz Szemberg},
     title = {Equations defining reducible {Kummer} surfaces in {\ensuremath{\mathbb{P}}⁵}},
     journal = {Annales Polonici Mathematici},
     pages = {51--62},
     publisher = {mathdoc},
     volume = {63},
     number = {1},
     year = {1996},
     doi = {10.4064/ap-63-1-51-62},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-63-1-51-62/}
}
TY  - JOUR
AU  - Tomasz Szemberg
TI  - Equations defining reducible Kummer surfaces in ℙ⁵
JO  - Annales Polonici Mathematici
PY  - 1996
SP  - 51
EP  - 62
VL  - 63
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-63-1-51-62/
DO  - 10.4064/ap-63-1-51-62
LA  - en
ID  - 10_4064_ap_63_1_51_62
ER  - 
%0 Journal Article
%A Tomasz Szemberg
%T Equations defining reducible Kummer surfaces in ℙ⁵
%J Annales Polonici Mathematici
%D 1996
%P 51-62
%V 63
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-63-1-51-62/
%R 10.4064/ap-63-1-51-62
%G en
%F 10_4064_ap_63_1_51_62
Tomasz Szemberg. Equations defining reducible Kummer surfaces in ℙ⁵. Annales Polonici Mathematici, Tome 63 (1996) no. 1, pp. 51-62. doi : 10.4064/ap-63-1-51-62. http://geodesic.mathdoc.fr/articles/10.4064/ap-63-1-51-62/

Cité par Sources :