A topological version of Bertini's theorem
Annales Polonici Mathematici, Tome 61 (1995) no. 1, pp. 89-93
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We give a topological version of a Bertini type theorem due to Abhyankar. A new definition of a branched covering is given. If the restriction $π_V: V → Y$ of the natural projection π: Y × Z → Y to a closed set V ⊂ Y × Z is a branched covering then, under certain assumptions, we can obtain generators of the fundamental group π₁((Y×Z)\V).
Keywords:
fundamental group, branched covering
Affiliations des auteurs :
Artur Piękosz 1
@article{10_4064_ap_61_1_89_93,
author = {Artur Pi\k{e}kosz},
title = {A topological version of {Bertini's} theorem},
journal = {Annales Polonici Mathematici},
pages = {89--93},
year = {1995},
volume = {61},
number = {1},
doi = {10.4064/ap-61-1-89-93},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-61-1-89-93/}
}
Artur Piękosz. A topological version of Bertini's theorem. Annales Polonici Mathematici, Tome 61 (1995) no. 1, pp. 89-93. doi: 10.4064/ap-61-1-89-93
Cité par Sources :