On concentrated probabilities
Annales Polonici Mathematici, Tome 61 (1995) no. 1, pp. 25-38
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let G be a locally compact Polish group with an invariant metric. We provide sufficient and necessary conditions for the existence of a compact set A ⊆ G and a sequence $g_n ∈ G$ such that $μ^{∗n}(g_n A) ≡ 1$ for all n. It is noticed that such measures μ form a meager subset of all probabilities on G in the weak measure topology. If for some k the convolution power $μ^{∗k}$ has nontrivial absolutely continuous component then a similar characterization is obtained for any locally compact, σ-compact, unimodular, Hausdorff topological group G.
Keywords:
random walk, concentration function, convolution operator
Affiliations des auteurs :
Wojciech Bartoszek 1
@article{10_4064_ap_61_1_25_38,
author = {Wojciech Bartoszek},
title = {On concentrated probabilities},
journal = {Annales Polonici Mathematici},
pages = {25--38},
publisher = {mathdoc},
volume = {61},
number = {1},
year = {1995},
doi = {10.4064/ap-61-1-25-38},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-61-1-25-38/}
}
Wojciech Bartoszek. On concentrated probabilities. Annales Polonici Mathematici, Tome 61 (1995) no. 1, pp. 25-38. doi: 10.4064/ap-61-1-25-38
Cité par Sources :