On concentrated probabilities
Annales Polonici Mathematici, Tome 61 (1995) no. 1, pp. 25-38.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let G be a locally compact Polish group with an invariant metric. We provide sufficient and necessary conditions for the existence of a compact set A ⊆ G and a sequence $g_n ∈ G$ such that $μ^{∗n}(g_n A) ≡ 1$ for all n. It is noticed that such measures μ form a meager subset of all probabilities on G in the weak measure topology. If for some k the convolution power $μ^{∗k}$ has nontrivial absolutely continuous component then a similar characterization is obtained for any locally compact, σ-compact, unimodular, Hausdorff topological group G.
DOI : 10.4064/ap-61-1-25-38
Keywords: random walk, concentration function, convolution operator

Wojciech Bartoszek 1

1
@article{10_4064_ap_61_1_25_38,
     author = {Wojciech Bartoszek},
     title = {On concentrated probabilities},
     journal = {Annales Polonici Mathematici},
     pages = {25--38},
     publisher = {mathdoc},
     volume = {61},
     number = {1},
     year = {1995},
     doi = {10.4064/ap-61-1-25-38},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-61-1-25-38/}
}
TY  - JOUR
AU  - Wojciech Bartoszek
TI  - On concentrated probabilities
JO  - Annales Polonici Mathematici
PY  - 1995
SP  - 25
EP  - 38
VL  - 61
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-61-1-25-38/
DO  - 10.4064/ap-61-1-25-38
LA  - en
ID  - 10_4064_ap_61_1_25_38
ER  - 
%0 Journal Article
%A Wojciech Bartoszek
%T On concentrated probabilities
%J Annales Polonici Mathematici
%D 1995
%P 25-38
%V 61
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-61-1-25-38/
%R 10.4064/ap-61-1-25-38
%G en
%F 10_4064_ap_61_1_25_38
Wojciech Bartoszek. On concentrated probabilities. Annales Polonici Mathematici, Tome 61 (1995) no. 1, pp. 25-38. doi : 10.4064/ap-61-1-25-38. http://geodesic.mathdoc.fr/articles/10.4064/ap-61-1-25-38/

Cité par Sources :