Factorization of uniformly holomorphic functions
Annales Polonici Mathematici, Tome 61 (1995) no. 1, pp. 1-11
Let E be a complex Hausdorff locally convex space such that the strong dual E' of E is sequentially complete, let F be a closed linear subspace of E and let U be a uniformly open subset of E. We denote by Π: E → E/F the canonical quotient mapping. In §1 we study the factorization of uniformly holomorphic functions through π. In §2 we study F-quotients of uniform type and introduce the concept of envelope of uF-holomorphy of a connected uniformly open subset U of E. The main result states that the pull-back $ε*_{u}(U)$ of the envelope of uniform holomorphy of Π(U) constructed by Paques and Zaine [9] is the envelope of uF-holomorphy of U.
@article{10_4064_ap_61_1_1_11,
author = {Luiza Moraes and Otilia Paques and M. Zaine},
title = {Factorization of uniformly holomorphic functions},
journal = {Annales Polonici Mathematici},
pages = {1--11},
year = {1995},
volume = {61},
number = {1},
doi = {10.4064/ap-61-1-1-11},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-61-1-1-11/}
}
TY - JOUR AU - Luiza Moraes AU - Otilia Paques AU - M. Zaine TI - Factorization of uniformly holomorphic functions JO - Annales Polonici Mathematici PY - 1995 SP - 1 EP - 11 VL - 61 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-61-1-1-11/ DO - 10.4064/ap-61-1-1-11 LA - en ID - 10_4064_ap_61_1_1_11 ER -
Luiza Moraes; Otilia Paques; M. Zaine. Factorization of uniformly holomorphic functions. Annales Polonici Mathematici, Tome 61 (1995) no. 1, pp. 1-11. doi: 10.4064/ap-61-1-1-11
Cité par Sources :