Markov inequality on sets with polynomial parametrization
Annales Polonici Mathematici, Tome 60 (1994) no. 1, pp. 69-79
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The main result of this paper is the following: if a compact subset E of $ℝ^n$ is UPC in the direction of a vector $v ∈ S^{n-1}$ then E has the Markov property in the direction of v. We present a method which permits us to generalize as well as to improve an earlier result of Pawłucki and Pleśniak [PP1].
Keywords:
extremal function, Markov inequality
Affiliations des auteurs :
Mirosław Baran 1
@article{10_4064_ap_60_1_69_79,
author = {Miros{\l}aw Baran},
title = {Markov inequality on sets with polynomial parametrization},
journal = {Annales Polonici Mathematici},
pages = {69--79},
publisher = {mathdoc},
volume = {60},
number = {1},
year = {1994},
doi = {10.4064/ap-60-1-69-79},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-60-1-69-79/}
}
TY - JOUR AU - Mirosław Baran TI - Markov inequality on sets with polynomial parametrization JO - Annales Polonici Mathematici PY - 1994 SP - 69 EP - 79 VL - 60 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-60-1-69-79/ DO - 10.4064/ap-60-1-69-79 LA - en ID - 10_4064_ap_60_1_69_79 ER -
Mirosław Baran. Markov inequality on sets with polynomial parametrization. Annales Polonici Mathematici, Tome 60 (1994) no. 1, pp. 69-79. doi: 10.4064/ap-60-1-69-79
Cité par Sources :