Existence theorems for a semilinear elliptic boundary value problem
Annales Polonici Mathematici, Tome 60 (1994) no. 1, pp. 57-67.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let Ω be a bounded domain in $ℝ^n$, n ≥ 3, with a smooth boundary ∂Ω; let L be a linear, second order, elliptic operator; let f and g be two real-valued functions defined on Ω × ℝ such that f(x,z) ≤ g(x,z) for almost every x ∈ Ω and every z ∈ ℝ. In this paper we prove that, under suitable assumptions, the problem { f(x,u) ≤ Lu ≤ g(x,u)   in Ω,    u = 0     on ∂Ω, has at least one strong solution $u ∈ W^{2,p}(Ω) ∩ W^{1,p}_0(Ω). Next, we present some remarkable special cases.
DOI : 10.4064/ap-60-1-57-67
Keywords: elliptic differential inclusions, semilinear elliptic equations, strong solutions

Salvatore Marano 1

1
@article{10_4064_ap_60_1_57_67,
     author = {Salvatore Marano},
     title = {Existence theorems for a semilinear elliptic boundary value problem},
     journal = {Annales Polonici Mathematici},
     pages = {57--67},
     publisher = {mathdoc},
     volume = {60},
     number = {1},
     year = {1994},
     doi = {10.4064/ap-60-1-57-67},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-60-1-57-67/}
}
TY  - JOUR
AU  - Salvatore Marano
TI  - Existence theorems for a semilinear elliptic boundary value problem
JO  - Annales Polonici Mathematici
PY  - 1994
SP  - 57
EP  - 67
VL  - 60
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-60-1-57-67/
DO  - 10.4064/ap-60-1-57-67
LA  - en
ID  - 10_4064_ap_60_1_57_67
ER  - 
%0 Journal Article
%A Salvatore Marano
%T Existence theorems for a semilinear elliptic boundary value problem
%J Annales Polonici Mathematici
%D 1994
%P 57-67
%V 60
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-60-1-57-67/
%R 10.4064/ap-60-1-57-67
%G en
%F 10_4064_ap_60_1_57_67
Salvatore Marano. Existence theorems for a semilinear elliptic boundary value problem. Annales Polonici Mathematici, Tome 60 (1994) no. 1, pp. 57-67. doi : 10.4064/ap-60-1-57-67. http://geodesic.mathdoc.fr/articles/10.4064/ap-60-1-57-67/

Cité par Sources :