Existence theorems for a semilinear elliptic boundary value problem
Annales Polonici Mathematici, Tome 60 (1994) no. 1, pp. 57-67
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let Ω be a bounded domain in $ℝ^n$, n ≥ 3, with a smooth boundary ∂Ω; let L be a linear, second order, elliptic operator; let f and g be two real-valued functions defined on Ω × ℝ such that f(x,z) ≤ g(x,z) for almost every x ∈ Ω and every z ∈ ℝ. In this paper we prove that, under suitable assumptions, the problem { f(x,u) ≤ Lu ≤ g(x,u) in Ω, u = 0 on ∂Ω, has at least one strong solution $u ∈ W^{2,p}(Ω) ∩ W^{1,p}_0(Ω). Next, we present some remarkable special cases.
Keywords:
elliptic differential inclusions, semilinear elliptic equations, strong solutions
Affiliations des auteurs :
Salvatore Marano 1
@article{10_4064_ap_60_1_57_67,
author = {Salvatore Marano},
title = {Existence theorems for a semilinear elliptic boundary value problem},
journal = {Annales Polonici Mathematici},
pages = {57--67},
year = {1994},
volume = {60},
number = {1},
doi = {10.4064/ap-60-1-57-67},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-60-1-57-67/}
}
TY - JOUR AU - Salvatore Marano TI - Existence theorems for a semilinear elliptic boundary value problem JO - Annales Polonici Mathematici PY - 1994 SP - 57 EP - 67 VL - 60 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-60-1-57-67/ DO - 10.4064/ap-60-1-57-67 LA - en ID - 10_4064_ap_60_1_57_67 ER -
Salvatore Marano. Existence theorems for a semilinear elliptic boundary value problem. Annales Polonici Mathematici, Tome 60 (1994) no. 1, pp. 57-67. doi: 10.4064/ap-60-1-57-67
Cité par Sources :