Convolution of radius functions on ℝ³
Annales Polonici Mathematici, Tome 60 (1994) no. 1, pp. 1-32
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We reduce the convolution of radius functions to that of 1-variable functions. Then we present formulas for computing convolutions of an abstract radius function on ℝ³ with various integral kernels - given by elementary or discontinuous functions. We also prove a theorem on the asymptotic behaviour of a convolution at infinity. Lastly, we deduce some estimates which enable us to find the asymptotics of the velocity and pressure of a fluid (described by the Navier-Stokes equations) in the boundary layer.
Keywords:
integral formulas, asymptotic behaviour of convolution at ∞
Affiliations des auteurs :
Konstanty Holly 1
@article{10_4064_ap_60_1_1_32,
author = {Konstanty Holly},
title = {Convolution of radius functions on {\ensuremath{\mathbb{R}}{\textthreesuperior}}},
journal = {Annales Polonici Mathematici},
pages = {1--32},
publisher = {mathdoc},
volume = {60},
number = {1},
year = {1994},
doi = {10.4064/ap-60-1-1-32},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-60-1-1-32/}
}
Konstanty Holly. Convolution of radius functions on ℝ³. Annales Polonici Mathematici, Tome 60 (1994) no. 1, pp. 1-32. doi: 10.4064/ap-60-1-1-32
Cité par Sources :