Convolution of radius functions on ℝ³
Annales Polonici Mathematici, Tome 60 (1994) no. 1, pp. 1-32.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We reduce the convolution of radius functions to that of 1-variable functions. Then we present formulas for computing convolutions of an abstract radius function on ℝ³ with various integral kernels - given by elementary or discontinuous functions. We also prove a theorem on the asymptotic behaviour of a convolution at infinity. Lastly, we deduce some estimates which enable us to find the asymptotics of the velocity and pressure of a fluid (described by the Navier-Stokes equations) in the boundary layer.
DOI : 10.4064/ap-60-1-1-32
Keywords: integral formulas, asymptotic behaviour of convolution at ∞

Konstanty Holly 1

1
@article{10_4064_ap_60_1_1_32,
     author = {Konstanty Holly},
     title = {Convolution of radius functions on {\ensuremath{\mathbb{R}}{\textthreesuperior}}},
     journal = {Annales Polonici Mathematici},
     pages = {1--32},
     publisher = {mathdoc},
     volume = {60},
     number = {1},
     year = {1994},
     doi = {10.4064/ap-60-1-1-32},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-60-1-1-32/}
}
TY  - JOUR
AU  - Konstanty Holly
TI  - Convolution of radius functions on ℝ³
JO  - Annales Polonici Mathematici
PY  - 1994
SP  - 1
EP  - 32
VL  - 60
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-60-1-1-32/
DO  - 10.4064/ap-60-1-1-32
LA  - en
ID  - 10_4064_ap_60_1_1_32
ER  - 
%0 Journal Article
%A Konstanty Holly
%T Convolution of radius functions on ℝ³
%J Annales Polonici Mathematici
%D 1994
%P 1-32
%V 60
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-60-1-1-32/
%R 10.4064/ap-60-1-1-32
%G en
%F 10_4064_ap_60_1_1_32
Konstanty Holly. Convolution of radius functions on ℝ³. Annales Polonici Mathematici, Tome 60 (1994) no. 1, pp. 1-32. doi : 10.4064/ap-60-1-1-32. http://geodesic.mathdoc.fr/articles/10.4064/ap-60-1-1-32/

Cité par Sources :