Qualitative behavior of a class of second order nonlinear differential equations on the halfline
Annales Polonici Mathematici, Tome 58 (1993) no. 1, pp. 65-83
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A differential equation of the form (q(t)k(u)u')' = F(t,u)u' is considered and solutions u with u(0) = 0 are studied on the halfline [0,∞). Theorems about the existence, uniqueness, boundedness and dependence of solutions on a parameter are given.
Keywords:
nonlinear differential equation, nonnegative solution, nonpositive solution, existence and uniqueness of solutions, bounded solution, dependence of solutions on a parameter, boundary value problem
Affiliations des auteurs :
Svatoslav Staněk 1
@article{10_4064_ap_58_1_65_83,
author = {Svatoslav Stan\v{e}k},
title = {Qualitative behavior of a class of second order nonlinear differential equations on the halfline},
journal = {Annales Polonici Mathematici},
pages = {65--83},
publisher = {mathdoc},
volume = {58},
number = {1},
year = {1993},
doi = {10.4064/ap-58-1-65-83},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-58-1-65-83/}
}
TY - JOUR AU - Svatoslav Staněk TI - Qualitative behavior of a class of second order nonlinear differential equations on the halfline JO - Annales Polonici Mathematici PY - 1993 SP - 65 EP - 83 VL - 58 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-58-1-65-83/ DO - 10.4064/ap-58-1-65-83 LA - en ID - 10_4064_ap_58_1_65_83 ER -
%0 Journal Article %A Svatoslav Staněk %T Qualitative behavior of a class of second order nonlinear differential equations on the halfline %J Annales Polonici Mathematici %D 1993 %P 65-83 %V 58 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap-58-1-65-83/ %R 10.4064/ap-58-1-65-83 %G en %F 10_4064_ap_58_1_65_83
Svatoslav Staněk. Qualitative behavior of a class of second order nonlinear differential equations on the halfline. Annales Polonici Mathematici, Tome 58 (1993) no. 1, pp. 65-83. doi: 10.4064/ap-58-1-65-83
Cité par Sources :