Most random walks on nilpotent groups are mixing
Annales Polonici Mathematici, Tome 57 (1992) no. 3, pp. 265-268.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let G be a second countable locally compact nilpotent group. It is shown that for every norm completely mixing (n.c.m.) random walk μ, αμ + (1-α)ν is n.c.m. for 0 α ≤ 1, ν ∈ P(G). In particular, a generic stochastic convolution operator on G is n.c.m.
DOI : 10.4064/ap-57-3-265-268
Keywords: stochastic operator, convolution operator, random walk, norm completely mixing, nilpotent group

R. Rębowski 1

1
@article{10_4064_ap_57_3_265_268,
     author = {R. R\k{e}bowski},
     title = {Most random walks on nilpotent groups are mixing},
     journal = {Annales Polonici Mathematici},
     pages = {265--268},
     publisher = {mathdoc},
     volume = {57},
     number = {3},
     year = {1992},
     doi = {10.4064/ap-57-3-265-268},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-57-3-265-268/}
}
TY  - JOUR
AU  - R. Rębowski
TI  - Most random walks on nilpotent groups are mixing
JO  - Annales Polonici Mathematici
PY  - 1992
SP  - 265
EP  - 268
VL  - 57
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-57-3-265-268/
DO  - 10.4064/ap-57-3-265-268
LA  - en
ID  - 10_4064_ap_57_3_265_268
ER  - 
%0 Journal Article
%A R. Rębowski
%T Most random walks on nilpotent groups are mixing
%J Annales Polonici Mathematici
%D 1992
%P 265-268
%V 57
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-57-3-265-268/
%R 10.4064/ap-57-3-265-268
%G en
%F 10_4064_ap_57_3_265_268
R. Rębowski. Most random walks on nilpotent groups are mixing. Annales Polonici Mathematici, Tome 57 (1992) no. 3, pp. 265-268. doi : 10.4064/ap-57-3-265-268. http://geodesic.mathdoc.fr/articles/10.4064/ap-57-3-265-268/

Cité par Sources :