Nonnegative solutions of a class of second order nonlinear differential equations
Annales Polonici Mathematici, Tome 57 (1992) no. 1, pp. 71-82.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A differential equation of the form (q(t)k(u)u')' = λf(t)h(u)u' depending on the positive parameter λ is considered and nonnegative solutions u such that u(0) = 0, u(t) > 0 for t > 0 are studied. Some theorems about the existence, uniqueness and boundedness of solutions are given.
DOI : 10.4064/ap-57-1-71-82
Keywords: nonlinear ordinary differential equation, nonnegative solution, existence and uniqueness of solutions, bounded solution, dependence of solutions on a parameter, boundary value problem

S. Staněk 1

1
@article{10_4064_ap_57_1_71_82,
     author = {S. Stan\v{e}k},
     title = {Nonnegative solutions of a class of second order nonlinear differential equations},
     journal = {Annales Polonici Mathematici},
     pages = {71--82},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {1992},
     doi = {10.4064/ap-57-1-71-82},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-57-1-71-82/}
}
TY  - JOUR
AU  - S. Staněk
TI  - Nonnegative solutions of a class of second order nonlinear differential equations
JO  - Annales Polonici Mathematici
PY  - 1992
SP  - 71
EP  - 82
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-57-1-71-82/
DO  - 10.4064/ap-57-1-71-82
LA  - en
ID  - 10_4064_ap_57_1_71_82
ER  - 
%0 Journal Article
%A S. Staněk
%T Nonnegative solutions of a class of second order nonlinear differential equations
%J Annales Polonici Mathematici
%D 1992
%P 71-82
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-57-1-71-82/
%R 10.4064/ap-57-1-71-82
%G en
%F 10_4064_ap_57_1_71_82
S. Staněk. Nonnegative solutions of a class of second order nonlinear differential equations. Annales Polonici Mathematici, Tome 57 (1992) no. 1, pp. 71-82. doi : 10.4064/ap-57-1-71-82. http://geodesic.mathdoc.fr/articles/10.4064/ap-57-1-71-82/

Cité par Sources :