Univalent harmonic mappings
Annales Polonici Mathematici, Tome 57 (1992) no. 1, pp. 57-70.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let a 0, Ω = ℂ -(-∞, a] and U = {z: |z| 1}. We consider the class $S_H(U,Ω)$ of functions f which are univalent, harmonic and sense preserving with f(U) = Ω and satisfy f(0) = 0, $f_z(0) > 0$ and $f_{z̅}(0) = 0$. We describe the closure $\overline{S_H(U,Ω)}$ of $S_H(U,Ω)$ and determine the extreme points of $\overline{S_H(U,Ω)}$.
DOI : 10.4064/ap-57-1-57-70

Albert Livingston 1

1
@article{10_4064_ap_57_1_57_70,
     author = {Albert Livingston},
     title = {Univalent harmonic mappings},
     journal = {Annales Polonici Mathematici},
     pages = {57--70},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {1992},
     doi = {10.4064/ap-57-1-57-70},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-57-1-57-70/}
}
TY  - JOUR
AU  - Albert Livingston
TI  - Univalent harmonic mappings
JO  - Annales Polonici Mathematici
PY  - 1992
SP  - 57
EP  - 70
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-57-1-57-70/
DO  - 10.4064/ap-57-1-57-70
LA  - en
ID  - 10_4064_ap_57_1_57_70
ER  - 
%0 Journal Article
%A Albert Livingston
%T Univalent harmonic mappings
%J Annales Polonici Mathematici
%D 1992
%P 57-70
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-57-1-57-70/
%R 10.4064/ap-57-1-57-70
%G en
%F 10_4064_ap_57_1_57_70
Albert Livingston. Univalent harmonic mappings. Annales Polonici Mathematici, Tome 57 (1992) no. 1, pp. 57-70. doi : 10.4064/ap-57-1-57-70. http://geodesic.mathdoc.fr/articles/10.4064/ap-57-1-57-70/

Cité par Sources :