Radial segments and conformal mapping of an annulus onto domains bounded by a circle and a k-circle
Annales Polonici Mathematici, Tome 56 (1991) no. 2, pp. 157-162
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let f(z) be a conformal mapping of an annulus A(R) = {1 |z| R} and let f(A(R)) be a ring domain bounded by a circle and a k-circle. If R(φ) = {w : arg w = φ}, and l(φ) - 1 is the linear measure of f(A(R)) ∩ R(φ), then we determine the sharp lower bound of $l(φ_1) + l(φ_2)$ for fixed $φ_1$ and $φ_2$ $(0 ≤ φ_1 ≤ φ_2 ≤ 2π)$.
@article{10_4064_ap_56_2_157_162,
author = {Tetsuo Inoue},
title = {Radial segments and conformal mapping of an annulus onto domains bounded by a circle and a k-circle},
journal = {Annales Polonici Mathematici},
pages = {157--162},
publisher = {mathdoc},
volume = {56},
number = {2},
year = {1991},
doi = {10.4064/ap-56-2-157-162},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-56-2-157-162/}
}
TY - JOUR AU - Tetsuo Inoue TI - Radial segments and conformal mapping of an annulus onto domains bounded by a circle and a k-circle JO - Annales Polonici Mathematici PY - 1991 SP - 157 EP - 162 VL - 56 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-56-2-157-162/ DO - 10.4064/ap-56-2-157-162 LA - en ID - 10_4064_ap_56_2_157_162 ER -
%0 Journal Article %A Tetsuo Inoue %T Radial segments and conformal mapping of an annulus onto domains bounded by a circle and a k-circle %J Annales Polonici Mathematici %D 1991 %P 157-162 %V 56 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap-56-2-157-162/ %R 10.4064/ap-56-2-157-162 %G en %F 10_4064_ap_56_2_157_162
Tetsuo Inoue. Radial segments and conformal mapping of an annulus onto domains bounded by a circle and a k-circle. Annales Polonici Mathematici, Tome 56 (1991) no. 2, pp. 157-162. doi: 10.4064/ap-56-2-157-162
Cité par Sources :