Radial segments and conformal mapping of an annulus onto domains bounded by a circle and a k-circle
Annales Polonici Mathematici, Tome 56 (1991) no. 2, pp. 157-162.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let f(z) be a conformal mapping of an annulus A(R) = {1 |z| R} and let f(A(R)) be a ring domain bounded by a circle and a k-circle. If R(φ) = {w : arg w = φ}, and l(φ) - 1 is the linear measure of f(A(R)) ∩ R(φ), then we determine the sharp lower bound of $l(φ_1) + l(φ_2)$ for fixed $φ_1$ and $φ_2$ $(0 ≤ φ_1 ≤ φ_2 ≤ 2π)$.
DOI : 10.4064/ap-56-2-157-162

Tetsuo Inoue 1

1
@article{10_4064_ap_56_2_157_162,
     author = {Tetsuo Inoue},
     title = {Radial segments and conformal mapping of an annulus onto domains bounded by a circle and a k-circle},
     journal = {Annales Polonici Mathematici},
     pages = {157--162},
     publisher = {mathdoc},
     volume = {56},
     number = {2},
     year = {1991},
     doi = {10.4064/ap-56-2-157-162},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-56-2-157-162/}
}
TY  - JOUR
AU  - Tetsuo Inoue
TI  - Radial segments and conformal mapping of an annulus onto domains bounded by a circle and a k-circle
JO  - Annales Polonici Mathematici
PY  - 1991
SP  - 157
EP  - 162
VL  - 56
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-56-2-157-162/
DO  - 10.4064/ap-56-2-157-162
LA  - en
ID  - 10_4064_ap_56_2_157_162
ER  - 
%0 Journal Article
%A Tetsuo Inoue
%T Radial segments and conformal mapping of an annulus onto domains bounded by a circle and a k-circle
%J Annales Polonici Mathematici
%D 1991
%P 157-162
%V 56
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-56-2-157-162/
%R 10.4064/ap-56-2-157-162
%G en
%F 10_4064_ap_56_2_157_162
Tetsuo Inoue. Radial segments and conformal mapping of an annulus onto domains bounded by a circle and a k-circle. Annales Polonici Mathematici, Tome 56 (1991) no. 2, pp. 157-162. doi : 10.4064/ap-56-2-157-162. http://geodesic.mathdoc.fr/articles/10.4064/ap-56-2-157-162/

Cité par Sources :