The fixed points of holomorphic maps on a convex domain
Annales Polonici Mathematici, Tome 56 (1991) no. 2, pp. 143-148
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We give a simple proof of the result that if D is a (not necessarily bounded) hyperbolic convex domain in $ℂ^n$ then the set V of fixed points of a holomorphic map f:D → D is a connected complex submanifold of D; if V is not empty, V is a holomorphic retract of D. Moreover, we extend these results to the case of convex domains in a locally convex Hausdorff vector space.
@article{10_4064_ap_56_2_143_148,
author = {Thai Do},
title = {The fixed points of holomorphic maps on a convex domain},
journal = {Annales Polonici Mathematici},
pages = {143--148},
publisher = {mathdoc},
volume = {56},
number = {2},
year = {1991},
doi = {10.4064/ap-56-2-143-148},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-56-2-143-148/}
}
TY - JOUR AU - Thai Do TI - The fixed points of holomorphic maps on a convex domain JO - Annales Polonici Mathematici PY - 1991 SP - 143 EP - 148 VL - 56 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-56-2-143-148/ DO - 10.4064/ap-56-2-143-148 LA - en ID - 10_4064_ap_56_2_143_148 ER -
Thai Do. The fixed points of holomorphic maps on a convex domain. Annales Polonici Mathematici, Tome 56 (1991) no. 2, pp. 143-148. doi: 10.4064/ap-56-2-143-148
Cité par Sources :