The fixed points of holomorphic maps on a convex domain
Annales Polonici Mathematici, Tome 56 (1991) no. 2, pp. 143-148.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We give a simple proof of the result that if D is a (not necessarily bounded) hyperbolic convex domain in $ℂ^n$ then the set V of fixed points of a holomorphic map f:D → D is a connected complex submanifold of D; if V is not empty, V is a holomorphic retract of D. Moreover, we extend these results to the case of convex domains in a locally convex Hausdorff vector space.
DOI : 10.4064/ap-56-2-143-148

Thai Do 1

1
@article{10_4064_ap_56_2_143_148,
     author = {Thai Do},
     title = {The fixed points of holomorphic maps on a convex domain},
     journal = {Annales Polonici Mathematici},
     pages = {143--148},
     publisher = {mathdoc},
     volume = {56},
     number = {2},
     year = {1991},
     doi = {10.4064/ap-56-2-143-148},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-56-2-143-148/}
}
TY  - JOUR
AU  - Thai Do
TI  - The fixed points of holomorphic maps on a convex domain
JO  - Annales Polonici Mathematici
PY  - 1991
SP  - 143
EP  - 148
VL  - 56
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-56-2-143-148/
DO  - 10.4064/ap-56-2-143-148
LA  - en
ID  - 10_4064_ap_56_2_143_148
ER  - 
%0 Journal Article
%A Thai Do
%T The fixed points of holomorphic maps on a convex domain
%J Annales Polonici Mathematici
%D 1991
%P 143-148
%V 56
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-56-2-143-148/
%R 10.4064/ap-56-2-143-148
%G en
%F 10_4064_ap_56_2_143_148
Thai Do. The fixed points of holomorphic maps on a convex domain. Annales Polonici Mathematici, Tome 56 (1991) no. 2, pp. 143-148. doi : 10.4064/ap-56-2-143-148. http://geodesic.mathdoc.fr/articles/10.4064/ap-56-2-143-148/

Cité par Sources :