On the density of extremal solutions of differential inclusions
Annales Polonici Mathematici, Tome 56 (1991) no. 2, pp. 133-142.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

An existence theorem for the cauchy problem (*) ẋ ∈ ext F(t,x), x(t₀) = x₀, in banach spaces is proved, under assumptions which exclude compactness. Moreover, a type of density of the solution set of (*) in the solution set of ẋ ∈ f(t,x), x(t₀) = x₀, is established. The results are obtained by using an improved version of the baire category method developed in [8]-[10].
DOI : 10.4064/ap-56-2-133-142

F. De Blasi 1 ; G. Pianigiani 1

1
@article{10_4064_ap_56_2_133_142,
     author = {F. De Blasi and G. Pianigiani},
     title = {On the density of extremal solutions of differential inclusions},
     journal = {Annales Polonici Mathematici},
     pages = {133--142},
     publisher = {mathdoc},
     volume = {56},
     number = {2},
     year = {1991},
     doi = {10.4064/ap-56-2-133-142},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-56-2-133-142/}
}
TY  - JOUR
AU  - F. De Blasi
AU  - G. Pianigiani
TI  - On the density of extremal solutions of differential inclusions
JO  - Annales Polonici Mathematici
PY  - 1991
SP  - 133
EP  - 142
VL  - 56
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-56-2-133-142/
DO  - 10.4064/ap-56-2-133-142
LA  - en
ID  - 10_4064_ap_56_2_133_142
ER  - 
%0 Journal Article
%A F. De Blasi
%A G. Pianigiani
%T On the density of extremal solutions of differential inclusions
%J Annales Polonici Mathematici
%D 1991
%P 133-142
%V 56
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-56-2-133-142/
%R 10.4064/ap-56-2-133-142
%G en
%F 10_4064_ap_56_2_133_142
F. De Blasi; G. Pianigiani. On the density of extremal solutions of differential inclusions. Annales Polonici Mathematici, Tome 56 (1991) no. 2, pp. 133-142. doi : 10.4064/ap-56-2-133-142. http://geodesic.mathdoc.fr/articles/10.4064/ap-56-2-133-142/

Cité par Sources :