The homogeneous transfinite diameter of a compact subset of $ℂ^N$
Annales Polonici Mathematici, Tome 55 (1991) no. 1, pp. 191-205
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let K be a compact subset of $ℂ^N$. A sequence of nonnegative numbers defined by means of extremal points of K with respect to homogeneous polynomials is proved to be convergent. Its limit is called the homogeneous transfinite diameter of K. A few properties of this diameter are given and its value for some compact subsets of $ℂ^N$ is computed.
@article{10_4064_ap_55_1_191_205,
author = {Mieczys{\l}aw J\k{e}drzejowski},
title = {The homogeneous transfinite diameter of a compact subset of $\ensuremath{\mathbb{C}}^N$},
journal = {Annales Polonici Mathematici},
pages = {191--205},
year = {1991},
volume = {55},
number = {1},
doi = {10.4064/ap-55-1-191-205},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-55-1-191-205/}
}
TY - JOUR AU - Mieczysław Jędrzejowski TI - The homogeneous transfinite diameter of a compact subset of $ℂ^N$ JO - Annales Polonici Mathematici PY - 1991 SP - 191 EP - 205 VL - 55 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-55-1-191-205/ DO - 10.4064/ap-55-1-191-205 LA - en ID - 10_4064_ap_55_1_191_205 ER -
%0 Journal Article %A Mieczysław Jędrzejowski %T The homogeneous transfinite diameter of a compact subset of $ℂ^N$ %J Annales Polonici Mathematici %D 1991 %P 191-205 %V 55 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/ap-55-1-191-205/ %R 10.4064/ap-55-1-191-205 %G en %F 10_4064_ap_55_1_191_205
Mieczysław Jędrzejowski. The homogeneous transfinite diameter of a compact subset of $ℂ^N$. Annales Polonici Mathematici, Tome 55 (1991) no. 1, pp. 191-205. doi: 10.4064/ap-55-1-191-205
Cité par Sources :