Some application of the implicit function theorem to the stationary Navier-Stokes equations
Annales Polonici Mathematici, Tome 54 (1991) no. 2, pp. 93-109.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that - in the case of typical external forces - the set of stationary solutions of the Navier-Stokes equations is the limit of the (full) sequence of sets of solutions of the appropriate Galerkin equations, in the sense of the Hausdorff metric (for every inner approximation of the space of velocities). Then the uniqueness of the N-S equations is equivalent to the uniqueness of almost every of these Galerkin equations.
DOI : 10.4064/ap-54-2-93-109

Konstanty Holly 1

1
@article{10_4064_ap_54_2_93_109,
     author = {Konstanty Holly},
     title = {Some application of the implicit function theorem to the stationary {Navier-Stokes} equations},
     journal = {Annales Polonici Mathematici},
     pages = {93--109},
     publisher = {mathdoc},
     volume = {54},
     number = {2},
     year = {1991},
     doi = {10.4064/ap-54-2-93-109},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-54-2-93-109/}
}
TY  - JOUR
AU  - Konstanty Holly
TI  - Some application of the implicit function theorem to the stationary Navier-Stokes equations
JO  - Annales Polonici Mathematici
PY  - 1991
SP  - 93
EP  - 109
VL  - 54
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-54-2-93-109/
DO  - 10.4064/ap-54-2-93-109
LA  - en
ID  - 10_4064_ap_54_2_93_109
ER  - 
%0 Journal Article
%A Konstanty Holly
%T Some application of the implicit function theorem to the stationary Navier-Stokes equations
%J Annales Polonici Mathematici
%D 1991
%P 93-109
%V 54
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-54-2-93-109/
%R 10.4064/ap-54-2-93-109
%G en
%F 10_4064_ap_54_2_93_109
Konstanty Holly. Some application of the implicit function theorem to the stationary Navier-Stokes equations. Annales Polonici Mathematici, Tome 54 (1991) no. 2, pp. 93-109. doi : 10.4064/ap-54-2-93-109. http://geodesic.mathdoc.fr/articles/10.4064/ap-54-2-93-109/

Cité par Sources :