Boundary eigencurve problems involving the biharmonic operator
Applicationes Mathematicae, Tome 41 (2014) no. 2-3, pp. 267-275.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The aim of this paper is to study the spectrum of the fourth order eigenvalue boundary value problem $$\left \{ \begin{array}{@{}l@{}} \varDelta^{2}u=\alpha u+\beta\varDelta u \quad \hbox{in}\ \varOmega, \\ u=\varDelta u=0 \quad \hbox{on}\ \partial\varOmega. \end{array} \right.$$ where $(\alpha,\beta)\in\mathbb{R}^{2}$. We prove the existence of a first nontrivial curve of this spectrum and we give its variational characterization. Moreover we prove some properties of this curve, e.g., continuity, convexity, and asymptotic behavior. As an application, we study the non-resonance of solutions below the first principal eigencurve of the biharmonic problem \begin{equation*} \left\{ \begin{array}{@{}l@{}} \varDelta^2 u=f(u,x)+\beta \varDelta u+h \quad \mbox{in $\varOmega$},\\ \varDelta u=u=0\quad \mbox{on $\partial\varOmega$}, \end{array} \right. \end{equation*} where $f :\varOmega\times\mathbb{R}\rightarrow\mathbb{R}$ is a Carathéodory function and $h$ is a given function in $L^{2}(\varOmega)$.
DOI : 10.4064/am41-2-14
Keywords: paper study spectrum fourth order eigenvalue boundary value problem begin array vardelta alpha beta vardelta quad hbox varomega vardelta quad hbox partial varomega end array right where alpha beta mathbb prove existence first nontrivial curve spectrum its variational characterization moreover prove properties curve continuity convexity asymptotic behavior application study non resonance solutions below first principal eigencurve biharmonic problem begin equation* begin array vardelta x beta vardelta quad mbox varomega vardelta quad mbox partial varomega end array right end equation* where varomega times mathbb rightarrow mathbb carath odory function given function varomega

Omar Chakrone 1 ; Najib Tsouli 1 ; Mostafa Rahmani 1 ; Omar Darhouche 1

1 Department of Mathematics University Mohamed I P.O. Box 717 Oujda 60000, Morocco
@article{10_4064_am41_2_14,
     author = {Omar Chakrone and Najib Tsouli and Mostafa Rahmani and Omar Darhouche},
     title = {Boundary eigencurve problems
 involving the biharmonic operator},
     journal = {Applicationes Mathematicae},
     pages = {267--275},
     publisher = {mathdoc},
     volume = {41},
     number = {2-3},
     year = {2014},
     doi = {10.4064/am41-2-14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am41-2-14/}
}
TY  - JOUR
AU  - Omar Chakrone
AU  - Najib Tsouli
AU  - Mostafa Rahmani
AU  - Omar Darhouche
TI  - Boundary eigencurve problems
 involving the biharmonic operator
JO  - Applicationes Mathematicae
PY  - 2014
SP  - 267
EP  - 275
VL  - 41
IS  - 2-3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am41-2-14/
DO  - 10.4064/am41-2-14
LA  - en
ID  - 10_4064_am41_2_14
ER  - 
%0 Journal Article
%A Omar Chakrone
%A Najib Tsouli
%A Mostafa Rahmani
%A Omar Darhouche
%T Boundary eigencurve problems
 involving the biharmonic operator
%J Applicationes Mathematicae
%D 2014
%P 267-275
%V 41
%N 2-3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am41-2-14/
%R 10.4064/am41-2-14
%G en
%F 10_4064_am41_2_14
Omar Chakrone; Najib Tsouli; Mostafa Rahmani; Omar Darhouche. Boundary eigencurve problems
 involving the biharmonic operator. Applicationes Mathematicae, Tome 41 (2014) no. 2-3, pp. 267-275. doi : 10.4064/am41-2-14. http://geodesic.mathdoc.fr/articles/10.4064/am41-2-14/

Cité par Sources :