Boundary eigencurve problems
involving the biharmonic operator
Applicationes Mathematicae, Tome 41 (2014) no. 2-3, pp. 267-275
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The aim of this paper is to study the spectrum of the
fourth order eigenvalue boundary value problem
$$\left \{
\begin{array}{@{}l@{}}
\varDelta^{2}u=\alpha u+\beta\varDelta u \quad \hbox{in}\ \varOmega, \\
u=\varDelta u=0 \quad \hbox{on}\ \partial\varOmega.
\end{array}
\right.$$
where $(\alpha,\beta)\in\mathbb{R}^{2}$. We prove the existence of
a first nontrivial curve of this spectrum and we give its
variational characterization. Moreover we prove some properties of
this curve, e.g., continuity, convexity, and asymptotic
behavior. As an application, we study the non-resonance of
solutions below the first principal eigencurve of the biharmonic
problem
\begin{equation*}
\left\{
\begin{array}{@{}l@{}}
\varDelta^2 u=f(u,x)+\beta \varDelta u+h \quad \mbox{in $\varOmega$},\\
\varDelta u=u=0\quad \mbox{on $\partial\varOmega$},
\end{array}
\right.
\end{equation*}
where $f :\varOmega\times\mathbb{R}\rightarrow\mathbb{R}$ is a
Carathéodory function and $h$ is a given function in
$L^{2}(\varOmega)$.
Keywords:
paper study spectrum fourth order eigenvalue boundary value problem begin array vardelta alpha beta vardelta quad hbox varomega vardelta quad hbox partial varomega end array right where alpha beta mathbb prove existence first nontrivial curve spectrum its variational characterization moreover prove properties curve continuity convexity asymptotic behavior application study non resonance solutions below first principal eigencurve biharmonic problem begin equation* begin array vardelta x beta vardelta quad mbox varomega vardelta quad mbox partial varomega end array right end equation* where varomega times mathbb rightarrow mathbb carath odory function given function varomega
Affiliations des auteurs :
Omar Chakrone 1 ; Najib Tsouli 1 ; Mostafa Rahmani 1 ; Omar Darhouche 1
@article{10_4064_am41_2_14,
author = {Omar Chakrone and Najib Tsouli and Mostafa Rahmani and Omar Darhouche},
title = {Boundary eigencurve problems
involving the biharmonic operator},
journal = {Applicationes Mathematicae},
pages = {267--275},
publisher = {mathdoc},
volume = {41},
number = {2-3},
year = {2014},
doi = {10.4064/am41-2-14},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am41-2-14/}
}
TY - JOUR AU - Omar Chakrone AU - Najib Tsouli AU - Mostafa Rahmani AU - Omar Darhouche TI - Boundary eigencurve problems involving the biharmonic operator JO - Applicationes Mathematicae PY - 2014 SP - 267 EP - 275 VL - 41 IS - 2-3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/am41-2-14/ DO - 10.4064/am41-2-14 LA - en ID - 10_4064_am41_2_14 ER -
%0 Journal Article %A Omar Chakrone %A Najib Tsouli %A Mostafa Rahmani %A Omar Darhouche %T Boundary eigencurve problems involving the biharmonic operator %J Applicationes Mathematicae %D 2014 %P 267-275 %V 41 %N 2-3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/am41-2-14/ %R 10.4064/am41-2-14 %G en %F 10_4064_am41_2_14
Omar Chakrone; Najib Tsouli; Mostafa Rahmani; Omar Darhouche. Boundary eigencurve problems involving the biharmonic operator. Applicationes Mathematicae, Tome 41 (2014) no. 2-3, pp. 267-275. doi: 10.4064/am41-2-14
Cité par Sources :