Extinction in nonautonomous Kolmogorov systems
Applicationes Mathematicae, Tome 37 (2010) no. 2, pp. 185-199.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider nonautonomous competitive Kolmogorov systems, which are generalizations of the classical Lotka–Volterra competition model. Applying Ahmad and Lazer's definitions of lower and upper averages of a function, we give an average condition which guarantees that all but one of the species are driven to extinction.
DOI : 10.4064/am37-2-4
Keywords: consider nonautonomous competitive kolmogorov systems which generalizations classical lotka volterra competition model applying ahmad lazers definitions lower upper averages function average condition which guarantees species driven extinction

Joanna Pętela 1

1 Institute of Mathematics and Computer Science Wroc/law University of Technology Wybrzeże Wyspiańskiego 27 50-370 Wroc/law, Poland
@article{10_4064_am37_2_4,
     author = {Joanna P\k{e}tela},
     title = {Extinction in nonautonomous
 {Kolmogorov} systems},
     journal = {Applicationes Mathematicae},
     pages = {185--199},
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {2010},
     doi = {10.4064/am37-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am37-2-4/}
}
TY  - JOUR
AU  - Joanna Pętela
TI  - Extinction in nonautonomous
 Kolmogorov systems
JO  - Applicationes Mathematicae
PY  - 2010
SP  - 185
EP  - 199
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am37-2-4/
DO  - 10.4064/am37-2-4
LA  - en
ID  - 10_4064_am37_2_4
ER  - 
%0 Journal Article
%A Joanna Pętela
%T Extinction in nonautonomous
 Kolmogorov systems
%J Applicationes Mathematicae
%D 2010
%P 185-199
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am37-2-4/
%R 10.4064/am37-2-4
%G en
%F 10_4064_am37_2_4
Joanna Pętela. Extinction in nonautonomous
 Kolmogorov systems. Applicationes Mathematicae, Tome 37 (2010) no. 2, pp. 185-199. doi : 10.4064/am37-2-4. http://geodesic.mathdoc.fr/articles/10.4064/am37-2-4/

Cité par Sources :