Extinction in nonautonomous
Kolmogorov systems
Applicationes Mathematicae, Tome 37 (2010) no. 2, pp. 185-199
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider nonautonomous competitive Kolmogorov systems, which are generalizations of the classical Lotka–Volterra competition model. Applying Ahmad and Lazer's definitions of lower and upper averages of a function, we give an average condition which guarantees that all but one of the species are driven to extinction.
Keywords:
consider nonautonomous competitive kolmogorov systems which generalizations classical lotka volterra competition model applying ahmad lazers definitions lower upper averages function average condition which guarantees species driven extinction
Affiliations des auteurs :
Joanna Pętela 1
@article{10_4064_am37_2_4,
author = {Joanna P\k{e}tela},
title = {Extinction in nonautonomous
{Kolmogorov} systems},
journal = {Applicationes Mathematicae},
pages = {185--199},
year = {2010},
volume = {37},
number = {2},
doi = {10.4064/am37-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am37-2-4/}
}
Joanna Pętela. Extinction in nonautonomous Kolmogorov systems. Applicationes Mathematicae, Tome 37 (2010) no. 2, pp. 185-199. doi: 10.4064/am37-2-4
Cité par Sources :