Weak convergence of mutually independent $X_n^B$ and $X_n^A$ under weak convergence of $ X_n\equiv X_n^B-X_n^A $
Applicationes Mathematicae, Tome 33 (2006) no. 1, pp. 41-49.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For each $n\geq 1,$ let $\{ v_{n,k}, k\geq 1\} $ and $\{ u_{n,k}, k\geq 1\} $ be mutually independent sequences of nonnegative random variables and let each of them consist of mutually independent and identically distributed random variables with means $\overline {v}_n$ and $\overline {u}_n,$ respectively. Let $X_n^B(t)={(1/ c_n)}\sum _{j=1}^{[nt]}(v_{n,j} -\overline {v}_n),$ $X_n^A(t)={(1/ c_n)}\sum _{j=1}^{[nt]}(u_{n,j}-\overline {u}_n),\ t\geq 0,$ and $ X_n=X_n^B-X_n^A.$ The main result gives conditions under which the weak convergence $X_n\mathrel {\mathop {\rightarrow }\limits ^ { D}}X,$ where $X$ is a Lévy process, implies $X_n^B\mathrel {\mathop {\rightarrow }\limits ^{ D}}X^B$ and $X_n^A\mathrel {\mathop {\rightarrow }\limits ^{ D}}X^A,$ where $X^B$ and $ X^A$ are mutually independent Lévy processes and $X=X^B-X^A$.
DOI : 10.4064/am33-1-3
Keywords: each geq geq geq mutually independent sequences nonnegative random variables each consist mutually independent identically distributed random variables means overline overline respectively t sum overline t sum overline geq n b x main result gives conditions under which weak convergence mathrel mathop rightarrow limits where process implies mathrel mathop rightarrow limits mathrel mathop rightarrow limits where mutually independent processes b x

W. Szczotka 1

1 Institute of Mathematics University of Wroc/law Pl. Grunwaldzki 2/4 50-384 Wroc/law, Poland
@article{10_4064_am33_1_3,
     author = {W. Szczotka},
     title = {Weak convergence of mutually independent
 $X_n^B$ and $X_n^A$ under weak convergence of
 $ X_n\equiv X_n^B-X_n^A $},
     journal = {Applicationes Mathematicae},
     pages = {41--49},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2006},
     doi = {10.4064/am33-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am33-1-3/}
}
TY  - JOUR
AU  - W. Szczotka
TI  - Weak convergence of mutually independent
 $X_n^B$ and $X_n^A$ under weak convergence of
 $ X_n\equiv X_n^B-X_n^A $
JO  - Applicationes Mathematicae
PY  - 2006
SP  - 41
EP  - 49
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am33-1-3/
DO  - 10.4064/am33-1-3
LA  - en
ID  - 10_4064_am33_1_3
ER  - 
%0 Journal Article
%A W. Szczotka
%T Weak convergence of mutually independent
 $X_n^B$ and $X_n^A$ under weak convergence of
 $ X_n\equiv X_n^B-X_n^A $
%J Applicationes Mathematicae
%D 2006
%P 41-49
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am33-1-3/
%R 10.4064/am33-1-3
%G en
%F 10_4064_am33_1_3
W. Szczotka. Weak convergence of mutually independent
 $X_n^B$ and $X_n^A$ under weak convergence of
 $ X_n\equiv X_n^B-X_n^A $. Applicationes Mathematicae, Tome 33 (2006) no. 1, pp. 41-49. doi : 10.4064/am33-1-3. http://geodesic.mathdoc.fr/articles/10.4064/am33-1-3/

Cité par Sources :