Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
W. Szczotka 1
@article{10_4064_am33_1_3, author = {W. Szczotka}, title = {Weak convergence of mutually independent $X_n^B$ and $X_n^A$ under weak convergence of $ X_n\equiv X_n^B-X_n^A $}, journal = {Applicationes Mathematicae}, pages = {41--49}, publisher = {mathdoc}, volume = {33}, number = {1}, year = {2006}, doi = {10.4064/am33-1-3}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/am33-1-3/} }
TY - JOUR AU - W. Szczotka TI - Weak convergence of mutually independent $X_n^B$ and $X_n^A$ under weak convergence of $ X_n\equiv X_n^B-X_n^A $ JO - Applicationes Mathematicae PY - 2006 SP - 41 EP - 49 VL - 33 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/am33-1-3/ DO - 10.4064/am33-1-3 LA - en ID - 10_4064_am33_1_3 ER -
%0 Journal Article %A W. Szczotka %T Weak convergence of mutually independent $X_n^B$ and $X_n^A$ under weak convergence of $ X_n\equiv X_n^B-X_n^A $ %J Applicationes Mathematicae %D 2006 %P 41-49 %V 33 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/am33-1-3/ %R 10.4064/am33-1-3 %G en %F 10_4064_am33_1_3
W. Szczotka. Weak convergence of mutually independent $X_n^B$ and $X_n^A$ under weak convergence of $ X_n\equiv X_n^B-X_n^A $. Applicationes Mathematicae, Tome 33 (2006) no. 1, pp. 41-49. doi : 10.4064/am33-1-3. http://geodesic.mathdoc.fr/articles/10.4064/am33-1-3/
Cité par Sources :