Weak convergence of mutually independent
$X_n^B$ and $X_n^A$ under weak convergence of
$ X_n\equiv X_n^B-X_n^A $
Applicationes Mathematicae, Tome 33 (2006) no. 1, pp. 41-49
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
For each $n\geq 1,$ let $\{ v_{n,k}, k\geq 1\} $ and $\{ u_{n,k},
k\geq 1\} $ be mutually independent sequences of nonnegative random variables and let each of them consist of mutually independent and identically distributed random variables with means $\overline {v}_n$ and $\overline {u}_n,$ respectively.
Let $X_n^B(t)={(1/ c_n)}\sum _{j=1}^{[nt]}(v_{n,j} -\overline {v}_n),$ $X_n^A(t)={(1/ c_n)}\sum _{j=1}^{[nt]}(u_{n,j}-\overline {u}_n),\ t\geq 0,$ and $ X_n=X_n^B-X_n^A.$ The main result gives conditions under which the weak convergence $X_n\mathrel {\mathop {\rightarrow }\limits ^
{ D}}X,$ where $X$ is a Lévy process, implies $X_n^B\mathrel {\mathop {\rightarrow }\limits ^{ D}}X^B$ and $X_n^A\mathrel {\mathop {\rightarrow }\limits ^{
D}}X^A,$ where $X^B$ and $ X^A$ are mutually independent Lévy processes and $X=X^B-X^A$.
Keywords:
each geq geq geq mutually independent sequences nonnegative random variables each consist mutually independent identically distributed random variables means overline overline respectively t sum overline t sum overline geq n b x main result gives conditions under which weak convergence mathrel mathop rightarrow limits where process implies mathrel mathop rightarrow limits mathrel mathop rightarrow limits where mutually independent processes b x
Affiliations des auteurs :
W. Szczotka 1
@article{10_4064_am33_1_3,
author = {W. Szczotka},
title = {Weak convergence of mutually independent
$X_n^B$ and $X_n^A$ under weak convergence of
$ X_n\equiv X_n^B-X_n^A $},
journal = {Applicationes Mathematicae},
pages = {41--49},
year = {2006},
volume = {33},
number = {1},
doi = {10.4064/am33-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am33-1-3/}
}
TY - JOUR AU - W. Szczotka TI - Weak convergence of mutually independent $X_n^B$ and $X_n^A$ under weak convergence of $ X_n\equiv X_n^B-X_n^A $ JO - Applicationes Mathematicae PY - 2006 SP - 41 EP - 49 VL - 33 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/am33-1-3/ DO - 10.4064/am33-1-3 LA - en ID - 10_4064_am33_1_3 ER -
%0 Journal Article %A W. Szczotka %T Weak convergence of mutually independent $X_n^B$ and $X_n^A$ under weak convergence of $ X_n\equiv X_n^B-X_n^A $ %J Applicationes Mathematicae %D 2006 %P 41-49 %V 33 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/am33-1-3/ %R 10.4064/am33-1-3 %G en %F 10_4064_am33_1_3
W. Szczotka. Weak convergence of mutually independent $X_n^B$ and $X_n^A$ under weak convergence of $ X_n\equiv X_n^B-X_n^A $. Applicationes Mathematicae, Tome 33 (2006) no. 1, pp. 41-49. doi: 10.4064/am33-1-3
Cité par Sources :