Estimating quantiles with Linex loss function. Applications to VaR estimation
Applicationes Mathematicae, Tome 32 (2005) no. 4, pp. 367-373.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Sometimes, e.g. in the context of estimating VaR (Value at Risk), underestimating a quantile is less desirable than overestimating it, which suggests measuring the error of estimation by an asymmetric loss function. As a loss function when estimating a parameter $\theta$ by an estimator $T$ we take the well known Linex function $\exp \{\alpha(T-\theta)\}-\alpha(T-\theta)-1$. To estimate the quantile of order $q\in(0,1)$ of a normal distribution $N(\mu,\sigma)$, we construct an optimal estimator in the class of all estimators of the form $\overline x+k\sigma$, $-\infty k \infty$, if $\sigma$ is known, or of the form $\overline x + \lambda s$, if both parameters $\mu$ and $\sigma$ are unknown; here $\overline x$ and $s$ are the standard estimators of $\mu$ and $\sigma$, respectively. To estimate a quantile of an unknown distribution $F$ from the family $\cal F$ of all continuous and strictly increasing distribution functions we construct an optimal estimator in the class $\cal T$ of all estimators which are equivariant with respect to monotone transformations of data.
DOI : 10.4064/am32-4-1
Keywords: sometimes context estimating var value risk underestimating quantile desirable overestimating which suggests measuring error estimation asymmetric loss function loss function estimating parameter theta estimator known linex function exp alpha t theta alpha t theta estimate quantile order normal distribution sigma construct optimal estimator class estimators form overline sigma infty infty sigma known form overline lambda parameters sigma unknown here overline standard estimators sigma respectively estimate quantile unknown distribution family cal continuous strictly increasing distribution functions construct optimal estimator class cal estimators which equivariant respect monotone transformations

Ryszard Zieliński 1

1 Institute of Mathematics Polish Academy of Sciences P.O. Box 21 00-956 Warszawa, Poland
@article{10_4064_am32_4_1,
     author = {Ryszard Zieli\'nski},
     title = {Estimating quantiles with {Linex} loss function.
 {Applications} to {VaR} estimation},
     journal = {Applicationes Mathematicae},
     pages = {367--373},
     publisher = {mathdoc},
     volume = {32},
     number = {4},
     year = {2005},
     doi = {10.4064/am32-4-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am32-4-1/}
}
TY  - JOUR
AU  - Ryszard Zieliński
TI  - Estimating quantiles with Linex loss function.
 Applications to VaR estimation
JO  - Applicationes Mathematicae
PY  - 2005
SP  - 367
EP  - 373
VL  - 32
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am32-4-1/
DO  - 10.4064/am32-4-1
LA  - en
ID  - 10_4064_am32_4_1
ER  - 
%0 Journal Article
%A Ryszard Zieliński
%T Estimating quantiles with Linex loss function.
 Applications to VaR estimation
%J Applicationes Mathematicae
%D 2005
%P 367-373
%V 32
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am32-4-1/
%R 10.4064/am32-4-1
%G en
%F 10_4064_am32_4_1
Ryszard Zieliński. Estimating quantiles with Linex loss function.
 Applications to VaR estimation. Applicationes Mathematicae, Tome 32 (2005) no. 4, pp. 367-373. doi : 10.4064/am32-4-1. http://geodesic.mathdoc.fr/articles/10.4064/am32-4-1/

Cité par Sources :