Estimating quantiles with Linex loss function.
Applications to VaR estimation
Applicationes Mathematicae, Tome 32 (2005) no. 4, pp. 367-373
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Sometimes, e.g. in the context of
estimating VaR (Value at Risk),
underestimating a quantile is less
desirable than overestimating it, which suggests measuring the error
of estimation by an asymmetric loss function.
As a loss function when estimating
a parameter $\theta$ by an estimator $T$
we take the well known Linex function
$\exp \{\alpha(T-\theta)\}-\alpha(T-\theta)-1$.
To estimate the quantile of order $q\in(0,1)$
of a normal distribution $N(\mu,\sigma)$,
we construct an optimal estimator in the class of all estimators
of the form $\overline x+k\sigma$,
$-\infty k \infty$, if $\sigma$ is known, or of the
form $\overline x + \lambda s$, if both parameters
$\mu$ and $\sigma$ are unknown;
here $\overline x$ and $s$ are the
standard estimators of $\mu$ and $\sigma$,
respectively. To estimate a quantile of an unknown distribution $F$ from the
family $\cal F$ of all continuous and strictly increasing distribution functions
we construct an optimal estimator in the class $\cal T$ of all estimators
which are equivariant with respect to monotone transformations of data.
Keywords:
sometimes context estimating var value risk underestimating quantile desirable overestimating which suggests measuring error estimation asymmetric loss function loss function estimating parameter theta estimator known linex function exp alpha t theta alpha t theta estimate quantile order normal distribution sigma construct optimal estimator class estimators form overline sigma infty infty sigma known form overline lambda parameters sigma unknown here overline standard estimators sigma respectively estimate quantile unknown distribution family cal continuous strictly increasing distribution functions construct optimal estimator class cal estimators which equivariant respect monotone transformations
Affiliations des auteurs :
Ryszard Zieliński 1
@article{10_4064_am32_4_1,
author = {Ryszard Zieli\'nski},
title = {Estimating quantiles with {Linex} loss function.
{Applications} to {VaR} estimation},
journal = {Applicationes Mathematicae},
pages = {367--373},
year = {2005},
volume = {32},
number = {4},
doi = {10.4064/am32-4-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am32-4-1/}
}
TY - JOUR AU - Ryszard Zieliński TI - Estimating quantiles with Linex loss function. Applications to VaR estimation JO - Applicationes Mathematicae PY - 2005 SP - 367 EP - 373 VL - 32 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.4064/am32-4-1/ DO - 10.4064/am32-4-1 LA - en ID - 10_4064_am32_4_1 ER -
Ryszard Zieliński. Estimating quantiles with Linex loss function. Applications to VaR estimation. Applicationes Mathematicae, Tome 32 (2005) no. 4, pp. 367-373. doi: 10.4064/am32-4-1
Cité par Sources :