Oscillation and global attractivity in
a discrete survival red blood cells model
Applicationes Mathematicae, Tome 30 (2003) no. 4, pp. 441-449
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider the discrete survival red blood cells model
\begin{equation*} N_{n+1}-N_{n}=-\delta _{n}N_{n}+P_{n}e^{-aN_{n-k}}, \tag{$\ast$}\end{equation*} where $\delta _{n}$ and $P_{n}$ are positive sequences. In the autonomous case we show that $(\ast )$ has a unique positive steady state $N^{\ast }$, we establish some sufficient conditions for oscillation of all positive solutions about $N^{\ast }$, and when $k=1$ we give a sufficient condition for $N^{\ast }$ to be globally asymptotically stable. In the nonatonomous case, assuming that there exists a positive solution
$\{ N_{n}^{\ast }\} ,$ we present necessary and sufficient conditions for oscillation of all positive solutions of
$(\ast )$ about $\{ N_{n}^{\ast }\} $. Our results can be considered as discrete analogues
of the recent results by Saker and Agarwal [12] and solve an open problem posed by
Kocic and Ladas [8].
Keywords:
consider discrete survival red blood cells model begin equation* n delta an n k tag ast end equation* where delta positive sequences autonomous ast has unique positive steady state ast establish sufficient conditions oscillation positive solutions about ast sufficient condition ast globally asymptotically stable nonatonomous assuming there exists positive solution ast present necessary sufficient conditions oscillation positive solutions ast about ast results considered discrete analogues recent results saker agarwal solve problem posed kocic ladas
Affiliations des auteurs :
I. Kubiaczyk 1 ; S. H. Saker 2
@article{10_4064_am30_4_6,
author = {I. Kubiaczyk and S. H. Saker},
title = {Oscillation and global attractivity in
a discrete survival red blood cells model},
journal = {Applicationes Mathematicae},
pages = {441--449},
year = {2003},
volume = {30},
number = {4},
doi = {10.4064/am30-4-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am30-4-6/}
}
TY - JOUR AU - I. Kubiaczyk AU - S. H. Saker TI - Oscillation and global attractivity in a discrete survival red blood cells model JO - Applicationes Mathematicae PY - 2003 SP - 441 EP - 449 VL - 30 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.4064/am30-4-6/ DO - 10.4064/am30-4-6 LA - en ID - 10_4064_am30_4_6 ER -
I. Kubiaczyk; S. H. Saker. Oscillation and global attractivity in a discrete survival red blood cells model. Applicationes Mathematicae, Tome 30 (2003) no. 4, pp. 441-449. doi: 10.4064/am30-4-6
Cité par Sources :