On the complexity of determining tolerances
for $\varepsilon $-optimal solutions to
min-max combinatorial optimization problems
Applicationes Mathematicae, Tome 30 (2003) no. 3, pp. 305-313
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
This paper studies the complexity of sensitivity analysis for optimal and $\varepsilon $-optimal solutions to general 0-1 combinatorial optimization problems with min-max objectives. Van Hoesel and Wagelmans [9] have studied the complexity of sensitivity analysis of optimal and $\varepsilon $-optimal solutions to min-sum problems, and Ramaswamy et al. [17] the complexity of sensitivity analysis of optimal solutions to min-max problems. We show that under some mild assumptions the sensitivity analysis of $\varepsilon $-optimal solutions to min-max problems is easy if and only if the original problem is easy. This result is interesting since it immediately applies to a large number of problems, and also because the technique used to prove it is different from the ones used in the related papers (for example, in [17] and [9]).
Keywords:
paper studies complexity sensitivity analysis optimal varepsilon optimal solutions general combinatorial optimization problems min max objectives van hoesel wagelmans have studied complexity sensitivity analysis optimal varepsilon optimal solutions min sum problems ramaswamy complexity sensitivity analysis optimal solutions min max problems under mild assumptions sensitivity analysis varepsilon optimal solutions min max problems easy only original problem easy result interesting since immediately applies large number problems because technique prove different related papers example
Affiliations des auteurs :
Diptesh Ghosh 1 ; Gerard Sierksma 2
@article{10_4064_am30_3_5,
author = {Diptesh Ghosh and Gerard Sierksma},
title = {On the complexity of determining tolerances
for $\varepsilon $-optimal solutions to
min-max combinatorial optimization problems},
journal = {Applicationes Mathematicae},
pages = {305--313},
publisher = {mathdoc},
volume = {30},
number = {3},
year = {2003},
doi = {10.4064/am30-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am30-3-5/}
}
TY - JOUR AU - Diptesh Ghosh AU - Gerard Sierksma TI - On the complexity of determining tolerances for $\varepsilon $-optimal solutions to min-max combinatorial optimization problems JO - Applicationes Mathematicae PY - 2003 SP - 305 EP - 313 VL - 30 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/am30-3-5/ DO - 10.4064/am30-3-5 LA - en ID - 10_4064_am30_3_5 ER -
%0 Journal Article %A Diptesh Ghosh %A Gerard Sierksma %T On the complexity of determining tolerances for $\varepsilon $-optimal solutions to min-max combinatorial optimization problems %J Applicationes Mathematicae %D 2003 %P 305-313 %V 30 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/am30-3-5/ %R 10.4064/am30-3-5 %G en %F 10_4064_am30_3_5
Diptesh Ghosh; Gerard Sierksma. On the complexity of determining tolerances for $\varepsilon $-optimal solutions to min-max combinatorial optimization problems. Applicationes Mathematicae, Tome 30 (2003) no. 3, pp. 305-313. doi: 10.4064/am30-3-5
Cité par Sources :