Hedging in complete markets
driven by normal martingales
Applicationes Mathematicae, Tome 30 (2003) no. 2, pp. 147-172
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
This paper aims at a unified treatment of hedging in market models driven by martingales with deterministic bracket
$\langle M,M\rangle _t$, including Brownian motion and the Poisson process as particular cases. Replicating hedging strategies for European, Asian and Lookback options are explicitly computed using either the Clark–Ocone formula or an
extension of the delta hedging method, depending on which is most appropriate.
Keywords:
paper aims unified treatment hedging market models driven martingales deterministic bracket langle rangle including brownian motion poisson process particular cases replicating hedging strategies european asian lookback options explicitly computed using either clark ocone formula extension delta hedging method depending which appropriate
Affiliations des auteurs :
Youssef El-Khatib 1 ; Nicolas Privault 1
@article{10_4064_am30_2_2,
author = {Youssef El-Khatib and Nicolas Privault},
title = {Hedging in complete markets
driven by normal martingales},
journal = {Applicationes Mathematicae},
pages = {147--172},
publisher = {mathdoc},
volume = {30},
number = {2},
year = {2003},
doi = {10.4064/am30-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am30-2-2/}
}
TY - JOUR AU - Youssef El-Khatib AU - Nicolas Privault TI - Hedging in complete markets driven by normal martingales JO - Applicationes Mathematicae PY - 2003 SP - 147 EP - 172 VL - 30 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/am30-2-2/ DO - 10.4064/am30-2-2 LA - en ID - 10_4064_am30_2_2 ER -
Youssef El-Khatib; Nicolas Privault. Hedging in complete markets driven by normal martingales. Applicationes Mathematicae, Tome 30 (2003) no. 2, pp. 147-172. doi: 10.4064/am30-2-2
Cité par Sources :