Robust Bayesian estimation with asymmetric loss function
Applicationes Mathematicae, Tome 29 (2002) no. 3, pp. 297-306.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The problem of robust Bayesian estimation in some models with an asymmetric loss function (LINEX) is considered. Some uncertainty about the prior is assumed by introducing two classes of priors. The most robust and conditional ${\mit \Gamma }$-minimax estimators are constructed. The situations when those estimators coincide are presented.
DOI : 10.4064/am29-3-3
Keywords: problem robust bayesian estimation models asymmetric loss function linex considered uncertainty about prior assumed introducing classes priors robust conditional mit gamma minimax estimators constructed situations those estimators coincide presented

Agata Boratyńska 1

1 Institute of Econometrics Warsaw School of Economics Al. Niepodległości 162 02-554 Warszawa, Poland
@article{10_4064_am29_3_3,
     author = {Agata Boraty\'nska},
     title = {Robust {Bayesian} estimation
 with asymmetric loss function},
     journal = {Applicationes Mathematicae},
     pages = {297--306},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2002},
     doi = {10.4064/am29-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am29-3-3/}
}
TY  - JOUR
AU  - Agata Boratyńska
TI  - Robust Bayesian estimation
 with asymmetric loss function
JO  - Applicationes Mathematicae
PY  - 2002
SP  - 297
EP  - 306
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am29-3-3/
DO  - 10.4064/am29-3-3
LA  - en
ID  - 10_4064_am29_3_3
ER  - 
%0 Journal Article
%A Agata Boratyńska
%T Robust Bayesian estimation
 with asymmetric loss function
%J Applicationes Mathematicae
%D 2002
%P 297-306
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am29-3-3/
%R 10.4064/am29-3-3
%G en
%F 10_4064_am29_3_3
Agata Boratyńska. Robust Bayesian estimation
 with asymmetric loss function. Applicationes Mathematicae, Tome 29 (2002) no. 3, pp. 297-306. doi : 10.4064/am29-3-3. http://geodesic.mathdoc.fr/articles/10.4064/am29-3-3/

Cité par Sources :