The Bayes choice of an experiment in
estimating a success probability
Applicationes Mathematicae, Tome 29 (2002) no. 2, pp. 135-144
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
A Bayesian method of estimation of a success probability $p$ is considered in the case when two experiments are available: individual Bernoulli $(p)$ trials—the
$p$-experiment—or products of $r$ individual Bernoulli
$(p)$ trials—the $p^{r}$-experiment.
This problem has its roots in reliability,
where one can test either single components or a system of $r$ identical
components. One of the problems considered is to find the degree
${\tilde r}$ of the $p^{\tilde r}$-experiment and
the size ${\tilde m}$ of the $p$-experiment such that the Bayes
estimator based on ${\tilde m}$ observations of the $p$-experiment
and $N-{\tilde m}$ observations of the $p^{\tilde r}$-experiment
minimizes the Bayes risk among all the Bayes estimators based on $m$ observations of
the $p$-experiment and $N-m$ observations of the $p^{r}$-experiment. Another problem
is to sequentially select some combination of these two experiments, i.e., to decide,
using the additional information resulting from the observation at each stage, which
experiment should be carried out at the next stage to achieve a lower posterior expected
loss.
Keywords:
bayesian method estimation success probability considered experiments available individual bernoulli trials p experiment products individual bernoulli trials experiment problem has its roots reliability where test either single components system identical components problems considered degree tilde tilde experiment size tilde p experiment bayes estimator based tilde observations p experiment n tilde observations tilde experiment minimizes bayes risk among bayes estimators based observations p experiment n m observations experiment another problem sequentially select combination these experiments decide using additional information resulting observation each stage which experiment should carried out stage achieve lower posterior expected loss
Affiliations des auteurs :
Alicja Jokiel-Rokita 1 ; Ryszard Magiera 1
@article{10_4064_am29_2_2,
author = {Alicja Jokiel-Rokita and Ryszard Magiera},
title = {The {Bayes} choice of an experiment in
estimating a success probability},
journal = {Applicationes Mathematicae},
pages = {135--144},
year = {2002},
volume = {29},
number = {2},
doi = {10.4064/am29-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am29-2-2/}
}
TY - JOUR AU - Alicja Jokiel-Rokita AU - Ryszard Magiera TI - The Bayes choice of an experiment in estimating a success probability JO - Applicationes Mathematicae PY - 2002 SP - 135 EP - 144 VL - 29 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/am29-2-2/ DO - 10.4064/am29-2-2 LA - en ID - 10_4064_am29_2_2 ER -
Alicja Jokiel-Rokita; Ryszard Magiera. The Bayes choice of an experiment in estimating a success probability. Applicationes Mathematicae, Tome 29 (2002) no. 2, pp. 135-144. doi: 10.4064/am29-2-2
Cité par Sources :