Minimax nonparametric prediction
Applicationes Mathematicae, Tome 28 (2001) no. 1, pp. 83-92.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $U_{0}$ be a random vector taking its values in a measurable space and having an unknown distribution $P$ and let $U_{1},\dots,U_{n}$ and $V_{1},\dots,V_{m}$ be independent, simple random samples from $P$ of size $n$ and $m$, respectively. Further, let $z_{1},\dots ,z_{k} $ be real-valued functions defined on the same space. Assuming that only the first sample is observed, we find a minimax predictor ${\boldsymbol d}^{0}(n,U_{1},\dots,U_{n})$ of the vector ${\boldsymbol Y}^{m} = \sum _{j=1}^{m} (z_{1}(V_{j}),\dots ,z_{k}(V_{j}))^{T}$ with respect to a quadratic errors loss function.
DOI : 10.4064/am28-1-6
Keywords: random vector taking its values measurable space having unknown distribution dots dots independent simple random samples size respectively further dots real valued functions defined space assuming only first sample observed minimax predictor boldsymbol dots vector boldsymbol sum dots respect quadratic errors loss function

Maciej Wilczy/nski 1

1 Institute of Mathematics Wroc/law University of Technology Wybrze/ze Wyspia/nskiego 27 50-370 Wroc/law, Poland
@article{10_4064_am28_1_6,
     author = {Maciej Wilczy/nski},
     title = {Minimax nonparametric prediction},
     journal = {Applicationes Mathematicae},
     pages = {83--92},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2001},
     doi = {10.4064/am28-1-6},
     zbl = {1008.62512},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am28-1-6/}
}
TY  - JOUR
AU  - Maciej Wilczy/nski
TI  - Minimax nonparametric prediction
JO  - Applicationes Mathematicae
PY  - 2001
SP  - 83
EP  - 92
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am28-1-6/
DO  - 10.4064/am28-1-6
LA  - en
ID  - 10_4064_am28_1_6
ER  - 
%0 Journal Article
%A Maciej Wilczy/nski
%T Minimax nonparametric prediction
%J Applicationes Mathematicae
%D 2001
%P 83-92
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am28-1-6/
%R 10.4064/am28-1-6
%G en
%F 10_4064_am28_1_6
Maciej Wilczy/nski. Minimax nonparametric prediction. Applicationes Mathematicae, Tome 28 (2001) no. 1, pp. 83-92. doi : 10.4064/am28-1-6. http://geodesic.mathdoc.fr/articles/10.4064/am28-1-6/

Cité par Sources :