Minimax nonparametric prediction
Applicationes Mathematicae, Tome 28 (2001) no. 1, pp. 83-92
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $U_{0}$ be a random vector taking its values in a
measurable space and having an unknown distribution $P$ and let
$U_{1},\dots,U_{n}$ and
$V_{1},\dots,V_{m}$ be independent,
simple random samples from $P$ of size $n$ and $m$,
respectively. Further, let $z_{1},\dots
,z_{k} $ be real-valued functions defined on the same
space. Assuming that only the first sample is observed, we find
a minimax predictor ${\boldsymbol
d}^{0}(n,U_{1},\dots,U_{n})$ of the
vector ${\boldsymbol Y}^{m} = \sum _{j=1}^{m}
(z_{1}(V_{j}),\dots
,z_{k}(V_{j}))^{T}$ with respect to a
quadratic errors loss function.
DOI :
10.4064/am28-1-6
Keywords:
random vector taking its values measurable space having unknown distribution dots dots independent simple random samples size respectively further dots real valued functions defined space assuming only first sample observed minimax predictor boldsymbol dots vector boldsymbol sum dots respect quadratic errors loss function
Affiliations des auteurs :
Maciej Wilczy/nski 1
@article{10_4064_am28_1_6,
author = {Maciej Wilczy/nski},
title = {Minimax nonparametric prediction},
journal = {Applicationes Mathematicae},
pages = {83--92},
publisher = {mathdoc},
volume = {28},
number = {1},
year = {2001},
doi = {10.4064/am28-1-6},
zbl = {1008.62512},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am28-1-6/}
}
Maciej Wilczy/nski. Minimax nonparametric prediction. Applicationes Mathematicae, Tome 28 (2001) no. 1, pp. 83-92. doi: 10.4064/am28-1-6
Cité par Sources :