On least squares discrete Fourier analysis of unequally spaced data
Applicationes Mathematicae, Tome 47 (2020) no. 2, pp. 207-224
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The problem of discrete Fourier analysis of observations at non-equidistant times using the standard set of complex harmonics $\exp (i2\pi kt)$, $t\in \mathbb {R}$, $k=0,\pm 1,\pm 2,\ldots ,$ and the least squares method is studied. The observation model $y_j = f(t_j) + \eta _j$, $j=1,\ldots ,n$, is considered for $f\in L^2[0,1]$, where $t_j\in [(j-1)/n,j/n)$, and $\eta _j$ are correlated complex valued random variables with $E_\eta \eta _j=0$ and $ E_\eta |\eta _j|^2=\sigma _\eta ^2 \lt \infty $. Uniqueness and finite sample properties of the observed function Fourier coefficient estimators $\hat c_k$, $k=0,\pm 1,\ldots ,\pm m$, where $m \lt n/(8\pi )$, obtained by the least squares method, as well as of the corresponding orthogonal projection estimator $\hat f_N(t)=\sum _{k=-m}^m\hat c_k\exp (i2\pi kt)$, where $N=2m+1$, are examined and compared with those of the standard Discrete Fourier Transform.
Keywords:
problem discrete fourier analysis observations non equidistant times using standard set complex harmonics exp mathbb ldots least squares method studied observation model eta ldots considered where j eta correlated complex valued random variables eta eta eta eta sigma eta infty uniqueness finite sample properties observed function fourier coefficient estimators hat ldots where obtained least squares method corresponding orthogonal projection estimator hat sum m hat exp where examined compared those standard discrete fourier transform
Affiliations des auteurs :
Waldemar Popiński 1
@article{10_4064_am2399_6_2020,
author = {Waldemar Popi\'nski},
title = {On least squares discrete {Fourier} analysis of unequally spaced data},
journal = {Applicationes Mathematicae},
pages = {207--224},
publisher = {mathdoc},
volume = {47},
number = {2},
year = {2020},
doi = {10.4064/am2399-6-2020},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am2399-6-2020/}
}
TY - JOUR AU - Waldemar Popiński TI - On least squares discrete Fourier analysis of unequally spaced data JO - Applicationes Mathematicae PY - 2020 SP - 207 EP - 224 VL - 47 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/am2399-6-2020/ DO - 10.4064/am2399-6-2020 LA - en ID - 10_4064_am2399_6_2020 ER -
Waldemar Popiński. On least squares discrete Fourier analysis of unequally spaced data. Applicationes Mathematicae, Tome 47 (2020) no. 2, pp. 207-224. doi: 10.4064/am2399-6-2020
Cité par Sources :