Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Ioannis K. Argyros 1 ; Ramandeep Behl 2 ; Daniel González 3 ; S. S. Motsa 4
@article{10_4064_am2374_1_2019, author = {Ioannis K. Argyros and Ramandeep Behl and Daniel Gonz\'alez and S. S. Motsa}, title = {Local convergence for multistep high order methods under weak conditions}, journal = {Applicationes Mathematicae}, pages = {293--304}, publisher = {mathdoc}, volume = {47}, number = {2}, year = {2020}, doi = {10.4064/am2374-1-2019}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/am2374-1-2019/} }
TY - JOUR AU - Ioannis K. Argyros AU - Ramandeep Behl AU - Daniel González AU - S. S. Motsa TI - Local convergence for multistep high order methods under weak conditions JO - Applicationes Mathematicae PY - 2020 SP - 293 EP - 304 VL - 47 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/am2374-1-2019/ DO - 10.4064/am2374-1-2019 LA - en ID - 10_4064_am2374_1_2019 ER -
%0 Journal Article %A Ioannis K. Argyros %A Ramandeep Behl %A Daniel González %A S. S. Motsa %T Local convergence for multistep high order methods under weak conditions %J Applicationes Mathematicae %D 2020 %P 293-304 %V 47 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/am2374-1-2019/ %R 10.4064/am2374-1-2019 %G en %F 10_4064_am2374_1_2019
Ioannis K. Argyros; Ramandeep Behl; Daniel González; S. S. Motsa. Local convergence for multistep high order methods under weak conditions. Applicationes Mathematicae, Tome 47 (2020) no. 2, pp. 293-304. doi : 10.4064/am2374-1-2019. http://geodesic.mathdoc.fr/articles/10.4064/am2374-1-2019/
Cité par Sources :