Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Ioannis K. Argyros 1 ; Santhosh George 2
@article{10_4064_am2321_4_2017, author = {Ioannis K. Argyros and Santhosh George}, title = {Convergence for variants of {Chebyshev{\textendash}Halley} methods using restricted convergence domains}, journal = {Applicationes Mathematicae}, pages = {115--126}, publisher = {mathdoc}, volume = {46}, number = {1}, year = {2019}, doi = {10.4064/am2321-4-2017}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/am2321-4-2017/} }
TY - JOUR AU - Ioannis K. Argyros AU - Santhosh George TI - Convergence for variants of Chebyshev–Halley methods using restricted convergence domains JO - Applicationes Mathematicae PY - 2019 SP - 115 EP - 126 VL - 46 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/am2321-4-2017/ DO - 10.4064/am2321-4-2017 LA - en ID - 10_4064_am2321_4_2017 ER -
%0 Journal Article %A Ioannis K. Argyros %A Santhosh George %T Convergence for variants of Chebyshev–Halley methods using restricted convergence domains %J Applicationes Mathematicae %D 2019 %P 115-126 %V 46 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/am2321-4-2017/ %R 10.4064/am2321-4-2017 %G en %F 10_4064_am2321_4_2017
Ioannis K. Argyros; Santhosh George. Convergence for variants of Chebyshev–Halley methods using restricted convergence domains. Applicationes Mathematicae, Tome 46 (2019) no. 1, pp. 115-126. doi : 10.4064/am2321-4-2017. http://geodesic.mathdoc.fr/articles/10.4064/am2321-4-2017/
Cité par Sources :