Convergence for variants of Chebyshev–Halley methods using restricted convergence domains
Applicationes Mathematicae, Tome 46 (2019) no. 1, pp. 115-126.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We present a local convergence analysis for some variants of Chebyshev–Halley methods of approximating a locally unique solution of a nonlinear equation in a Banach space setting. We only use hypotheses reaching up to the second Fréchet derivative of the operator involved in contrast to earlier studies using Lipschitz hypotheses on the second Fréchet derivative and other more restrictive conditions. This way the applicability of these methods is expanded. We also show how to improve the semilocal convergence in the earlier studies under the same conditions using our new idea of restricted convergence domains leading to: weaker sufficient convergence criteria, tighter error bounds on the distances involved and an at least as precise information on the location of the solution. Numerical examples where earlier results cannot be applied but our results can, are also provided.
DOI : 10.4064/am2321-4-2017
Keywords: present local convergence analysis variants chebyshev halley methods approximating locally unique solution nonlinear equation banach space setting only hypotheses reaching second chet derivative operator involved contrast earlier studies using lipschitz hypotheses second chet derivative other restrictive conditions applicability these methods expanded improve semilocal convergence earlier studies under conditions using idea restricted convergence domains leading weaker sufficient convergence criteria tighter error bounds distances involved least precise information location solution numerical examples where earlier results cannot applied results provided

Ioannis K. Argyros 1 ; Santhosh George 2

1 Department of Mathematical Sciences Cameron University Lawton, OK 73505, U.S.A.
2 Department of Mathematical and Computational Sciences NIT Karnataka Karnataka, India 575 025
@article{10_4064_am2321_4_2017,
     author = {Ioannis K. Argyros and Santhosh George},
     title = {Convergence for variants of {Chebyshev{\textendash}Halley} methods using restricted convergence domains},
     journal = {Applicationes Mathematicae},
     pages = {115--126},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2019},
     doi = {10.4064/am2321-4-2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am2321-4-2017/}
}
TY  - JOUR
AU  - Ioannis K. Argyros
AU  - Santhosh George
TI  - Convergence for variants of Chebyshev–Halley methods using restricted convergence domains
JO  - Applicationes Mathematicae
PY  - 2019
SP  - 115
EP  - 126
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am2321-4-2017/
DO  - 10.4064/am2321-4-2017
LA  - en
ID  - 10_4064_am2321_4_2017
ER  - 
%0 Journal Article
%A Ioannis K. Argyros
%A Santhosh George
%T Convergence for variants of Chebyshev–Halley methods using restricted convergence domains
%J Applicationes Mathematicae
%D 2019
%P 115-126
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am2321-4-2017/
%R 10.4064/am2321-4-2017
%G en
%F 10_4064_am2321_4_2017
Ioannis K. Argyros; Santhosh George. Convergence for variants of Chebyshev–Halley methods using restricted convergence domains. Applicationes Mathematicae, Tome 46 (2019) no. 1, pp. 115-126. doi : 10.4064/am2321-4-2017. http://geodesic.mathdoc.fr/articles/10.4064/am2321-4-2017/

Cité par Sources :