Global solutions of aerotaxis equations
Applicationes Mathematicae, Tome 44 (2017) no. 1, pp. 135-148.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the existence of the global solutions in a model describing the evolution of density of bacteria and oxygen dissolved in water filling a capillary. In the proof of local existence of classical solutions we use Amann theory. The Moser–Alikakos technique is the main tool for the proof of $L^\infty $ boundedness of local solutions.
DOI : 10.4064/am2301-2-2017
Mots-clés : study existence global solutions model describing evolution density bacteria oxygen dissolved water filling capillary proof local existence classical solutions amann theory moser alikakos technique main tool proof infty boundedness local solutions

Piotr Knosalla 1

1 Institute of Mathematics and Informatics Opole University Oleska 48 45-052 Opole, Poland
@article{10_4064_am2301_2_2017,
     author = {Piotr Knosalla},
     title = {Global solutions of aerotaxis equations},
     journal = {Applicationes Mathematicae},
     pages = {135--148},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {2017},
     doi = {10.4064/am2301-2-2017},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am2301-2-2017/}
}
TY  - JOUR
AU  - Piotr Knosalla
TI  - Global solutions of aerotaxis equations
JO  - Applicationes Mathematicae
PY  - 2017
SP  - 135
EP  - 148
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am2301-2-2017/
DO  - 10.4064/am2301-2-2017
LA  - fr
ID  - 10_4064_am2301_2_2017
ER  - 
%0 Journal Article
%A Piotr Knosalla
%T Global solutions of aerotaxis equations
%J Applicationes Mathematicae
%D 2017
%P 135-148
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am2301-2-2017/
%R 10.4064/am2301-2-2017
%G fr
%F 10_4064_am2301_2_2017
Piotr Knosalla. Global solutions of aerotaxis equations. Applicationes Mathematicae, Tome 44 (2017) no. 1, pp. 135-148. doi : 10.4064/am2301-2-2017. http://geodesic.mathdoc.fr/articles/10.4064/am2301-2-2017/

Cité par Sources :