Stability of smooth extensions of Bernoulli shifts
Applicationes Mathematicae, Tome 44 (2017) no. 1, pp. 85-104.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $ S_i,\,i=0,1$, be homeomorphisms of $I=[0,1]$ such that $S_i^{-1}(x)=(1-\epsilon _i)x+\epsilon _ig(x)$, $i=0,1$, for some reals $\epsilon _0 \lt 0$ and $\epsilon _1 \gt 0.$ Here $g$ is a $C^1(0,1)$ homeomorphism and $g(x) \lt x$ for $x\in (0,1).$ Let $(\varOmega ,\mathcal B,\mu _p,\sigma )$ be the one-sided Bernoulli shift where $\varOmega =\{0,1\}^{\mathbb {N}}$ and $\mu _p$ is the $(p,q)$ measure for some $p\in I.$ In the space $\varOmega \times I$ we define the skew product $S(\omega ,x)=(\sigma (\omega ),S_{\omega (0)}(x)) .$ For some class of distribution functions $F \in C^2(0,1)$ of probability measures and all $\epsilon _0 \lt 0$, $\epsilon _1 \gt 0 ,$ and $p\in ({\epsilon _1/(\epsilon _1-\epsilon _0)},1)$, we give sufficient conditions for existence of exactly one pair of homeomorphisms as above such that $\mu _p\times \mu _F$ is $S$-invariant. Here $\mu _F$ is the measure determined by $F.$ For example, as a consequence of the above, we show that if $S_0^{-1}(x)=1.307x-0.307x^2$ and $S_1^{-1}(x)=0.26x+0.74x^2 ,$ then for every $p\in [0.706781,{\sqrt {2}/2})$, $S$ possesses ergodic invariant measure $\mu _p\times \mu _{G_p}$ which is a kind of Sinai–Ruelle–Bowen measure. We apply the above results to the quantum harmonic oscillator and a binomial model for asset prices.
DOI : 10.4064/am2298-2-2017
Keywords: homeomorphisms epsilon epsilon reals epsilon epsilon here homeomorphism varomega mathcal sigma one sided bernoulli shift where varomega mathbb measure space varomega times define skew product omega sigma omega omega class distribution functions probability measures epsilon epsilon epsilon epsilon epsilon sufficient conditions existence exactly pair homeomorphisms above times s invariant here measure determined example consequence above x every sqrt possesses ergodic invariant measure times which kind sinai ruelle bowen measure apply above results quantum harmonic oscillator binomial model asset prices

Zbigniew S. Kowalski 1

1 Faculty of Pure and Applied Mathematics Wrocław University of Science and Technology 50-370 Wrocław, Poland
@article{10_4064_am2298_2_2017,
     author = {Zbigniew S. Kowalski},
     title = {Stability of smooth extensions of {Bernoulli} shifts},
     journal = {Applicationes Mathematicae},
     pages = {85--104},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {2017},
     doi = {10.4064/am2298-2-2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am2298-2-2017/}
}
TY  - JOUR
AU  - Zbigniew S. Kowalski
TI  - Stability of smooth extensions of Bernoulli shifts
JO  - Applicationes Mathematicae
PY  - 2017
SP  - 85
EP  - 104
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am2298-2-2017/
DO  - 10.4064/am2298-2-2017
LA  - en
ID  - 10_4064_am2298_2_2017
ER  - 
%0 Journal Article
%A Zbigniew S. Kowalski
%T Stability of smooth extensions of Bernoulli shifts
%J Applicationes Mathematicae
%D 2017
%P 85-104
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am2298-2-2017/
%R 10.4064/am2298-2-2017
%G en
%F 10_4064_am2298_2_2017
Zbigniew S. Kowalski. Stability of smooth extensions of Bernoulli shifts. Applicationes Mathematicae, Tome 44 (2017) no. 1, pp. 85-104. doi : 10.4064/am2298-2-2017. http://geodesic.mathdoc.fr/articles/10.4064/am2298-2-2017/

Cité par Sources :