Global existence and blow-up for a completely coupled Fujita type system
Applicationes Mathematicae, Tome 27 (2000) no. 2, pp. 203-218.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The Fujita type global existence and blow-up theorems are proved for a reaction-diffusion system of m equations (m>1) in the form $u_{it} = Δu_i + u_{i+1}^{p_i}, i=1,..., m-1,$ $u_{mt} = Δu_m + u_1^{p_m}, x ∈ ℝ^N, t > 0,$ with nonnegative, bounded, continuous initial values and positive numbers $p_i$. The dependence on $p_i$ of the length of existence time (its finiteness or infinitude) is established.
DOI : 10.4064/am-27-2-203-218

Joanna Rencławowicz 1

1
@article{10_4064_am_27_2_203_218,
     author = {Joanna Renc{\l}awowicz},
     title = {Global existence and blow-up for a completely coupled {Fujita} type system},
     journal = {Applicationes Mathematicae},
     pages = {203--218},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2000},
     doi = {10.4064/am-27-2-203-218},
     zbl = {0994.35055},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am-27-2-203-218/}
}
TY  - JOUR
AU  - Joanna Rencławowicz
TI  - Global existence and blow-up for a completely coupled Fujita type system
JO  - Applicationes Mathematicae
PY  - 2000
SP  - 203
EP  - 218
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am-27-2-203-218/
DO  - 10.4064/am-27-2-203-218
LA  - en
ID  - 10_4064_am_27_2_203_218
ER  - 
%0 Journal Article
%A Joanna Rencławowicz
%T Global existence and blow-up for a completely coupled Fujita type system
%J Applicationes Mathematicae
%D 2000
%P 203-218
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am-27-2-203-218/
%R 10.4064/am-27-2-203-218
%G en
%F 10_4064_am_27_2_203_218
Joanna Rencławowicz. Global existence and blow-up for a completely coupled Fujita type system. Applicationes Mathematicae, Tome 27 (2000) no. 2, pp. 203-218. doi : 10.4064/am-27-2-203-218. http://geodesic.mathdoc.fr/articles/10.4064/am-27-2-203-218/

Cité par Sources :