Global existence and blow-up for a completely coupled Fujita type system
Applicationes Mathematicae, Tome 27 (2000) no. 2, pp. 203-218
The Fujita type global existence and blow-up theorems are proved for a reaction-diffusion system of m equations (m>1) in the form $u_{it} = Δu_i + u_{i+1}^{p_i}, i=1,..., m-1,$ $u_{mt} = Δu_m + u_1^{p_m}, x ∈ ℝ^N, t > 0,$ with nonnegative, bounded, continuous initial values and positive numbers $p_i$. The dependence on $p_i$ of the length of existence time (its finiteness or infinitude) is established.
@article{10_4064_am_27_2_203_218,
author = {Joanna Renc{\l}awowicz},
title = {Global existence and blow-up for a completely coupled {Fujita} type system},
journal = {Applicationes Mathematicae},
pages = {203--218},
year = {2000},
volume = {27},
number = {2},
doi = {10.4064/am-27-2-203-218},
zbl = {0994.35055},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am-27-2-203-218/}
}
TY - JOUR AU - Joanna Rencławowicz TI - Global existence and blow-up for a completely coupled Fujita type system JO - Applicationes Mathematicae PY - 2000 SP - 203 EP - 218 VL - 27 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/am-27-2-203-218/ DO - 10.4064/am-27-2-203-218 LA - en ID - 10_4064_am_27_2_203_218 ER -
%0 Journal Article %A Joanna Rencławowicz %T Global existence and blow-up for a completely coupled Fujita type system %J Applicationes Mathematicae %D 2000 %P 203-218 %V 27 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/am-27-2-203-218/ %R 10.4064/am-27-2-203-218 %G en %F 10_4064_am_27_2_203_218
Joanna Rencławowicz. Global existence and blow-up for a completely coupled Fujita type system. Applicationes Mathematicae, Tome 27 (2000) no. 2, pp. 203-218. doi: 10.4064/am-27-2-203-218
Cité par Sources :