A conjugate gradient method with quasi-Newton approximation
Applicationes Mathematicae, Tome 27 (2000) no. 2, pp. 153-165
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The conjugate gradient method of Liu and Storey is an efficient minimization algorithm which uses second derivatives information, without saving matrices, by finite difference approximation. It is shown that the finite difference scheme can be removed by using a quasi-Newton approximation for computing a search direction, without loss of convergence. A conjugate gradient method based on BFGS approximation is proposed and compared with existing methods of the same class.
DOI :
10.4064/am-27-2-153-165
Keywords:
Newton and quasi-Newton methods, unconstrained high-dimensional optimization, conjugate gradient methods
Affiliations des auteurs :
Jonas Koko 1
@article{10_4064_am_27_2_153_165,
author = {Jonas Koko},
title = {A conjugate gradient method with {quasi-Newton} approximation},
journal = {Applicationes Mathematicae},
pages = {153--165},
year = {2000},
volume = {27},
number = {2},
doi = {10.4064/am-27-2-153-165},
zbl = {0999.65049},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am-27-2-153-165/}
}
TY - JOUR AU - Jonas Koko TI - A conjugate gradient method with quasi-Newton approximation JO - Applicationes Mathematicae PY - 2000 SP - 153 EP - 165 VL - 27 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/am-27-2-153-165/ DO - 10.4064/am-27-2-153-165 LA - en ID - 10_4064_am_27_2_153_165 ER -
Jonas Koko. A conjugate gradient method with quasi-Newton approximation. Applicationes Mathematicae, Tome 27 (2000) no. 2, pp. 153-165. doi: 10.4064/am-27-2-153-165
Cité par Sources :