A conjugate gradient method with quasi-Newton approximation
Applicationes Mathematicae, Tome 27 (2000) no. 2, pp. 153-165.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The conjugate gradient method of Liu and Storey is an efficient minimization algorithm which uses second derivatives information, without saving matrices, by finite difference approximation. It is shown that the finite difference scheme can be removed by using a quasi-Newton approximation for computing a search direction, without loss of convergence. A conjugate gradient method based on BFGS approximation is proposed and compared with existing methods of the same class.
DOI : 10.4064/am-27-2-153-165
Keywords: Newton and quasi-Newton methods, unconstrained high-dimensional optimization, conjugate gradient methods

Jonas Koko 1

1
@article{10_4064_am_27_2_153_165,
     author = {Jonas Koko},
     title = {A conjugate gradient method with {quasi-Newton} approximation},
     journal = {Applicationes Mathematicae},
     pages = {153--165},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2000},
     doi = {10.4064/am-27-2-153-165},
     zbl = {0999.65049},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am-27-2-153-165/}
}
TY  - JOUR
AU  - Jonas Koko
TI  - A conjugate gradient method with quasi-Newton approximation
JO  - Applicationes Mathematicae
PY  - 2000
SP  - 153
EP  - 165
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am-27-2-153-165/
DO  - 10.4064/am-27-2-153-165
LA  - en
ID  - 10_4064_am_27_2_153_165
ER  - 
%0 Journal Article
%A Jonas Koko
%T A conjugate gradient method with quasi-Newton approximation
%J Applicationes Mathematicae
%D 2000
%P 153-165
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am-27-2-153-165/
%R 10.4064/am-27-2-153-165
%G en
%F 10_4064_am_27_2_153_165
Jonas Koko. A conjugate gradient method with quasi-Newton approximation. Applicationes Mathematicae, Tome 27 (2000) no. 2, pp. 153-165. doi : 10.4064/am-27-2-153-165. http://geodesic.mathdoc.fr/articles/10.4064/am-27-2-153-165/

Cité par Sources :