On a globalization property
Applicationes Mathematicae, Tome 22 (1993) no. 1, pp. 69-73.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let (X,τ) be a topological space. Let Φ be a class of real-valued functions defined on X. A function ϕ ∈ Φ is called a local Φ-subgradient of a function f:X → ℝ at a point $x_0$ if there is a neighbourhood U of $x_0$ such that f(x) - f($x_0$) ≥ ϕ(x) - ϕ($x_0$) for all x ∈ U. A function ϕ ∈ Φ is called a global Φ-subgradient of f at $x_0$ if the inequality holds for all x ∈ X. The following properties of the class Φ are investigated: (a) when the existence of a local Φ-subgradient of a function f at each point implies the existence of a global Φ-subgradient of f at each point (globalization property), (b) when each local Φ-subgradient can be extended to a global Φ-subgradient (strong globalization property).
DOI : 10.4064/am-22-1-69-73
Keywords: Φ-subgradients, globalization property

Stefan Rolewicz 1

1
@article{10_4064_am_22_1_69_73,
     author = {Stefan Rolewicz},
     title = {On a globalization property},
     journal = {Applicationes Mathematicae},
     pages = {69--73},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {1993},
     doi = {10.4064/am-22-1-69-73},
     zbl = {0797.52002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am-22-1-69-73/}
}
TY  - JOUR
AU  - Stefan Rolewicz
TI  - On a globalization property
JO  - Applicationes Mathematicae
PY  - 1993
SP  - 69
EP  - 73
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am-22-1-69-73/
DO  - 10.4064/am-22-1-69-73
LA  - en
ID  - 10_4064_am_22_1_69_73
ER  - 
%0 Journal Article
%A Stefan Rolewicz
%T On a globalization property
%J Applicationes Mathematicae
%D 1993
%P 69-73
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am-22-1-69-73/
%R 10.4064/am-22-1-69-73
%G en
%F 10_4064_am_22_1_69_73
Stefan Rolewicz. On a globalization property. Applicationes Mathematicae, Tome 22 (1993) no. 1, pp. 69-73. doi : 10.4064/am-22-1-69-73. http://geodesic.mathdoc.fr/articles/10.4064/am-22-1-69-73/

Cité par Sources :