Triple correlations of multiplicative functions
Acta Arithmetica, Tome 180 (2017) no. 1, pp. 63-88
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We find an asymptotic formula for the following sum with explicit error term:
\[M_{x}(g_{1}, g_{2}, g_3)=\frac{1}{x}\sum_{n\le x}g_{1}(F_1(n))g_{2}(F_2(n))g_{3} (F_3(n)),\]
where $F_1(x), F_2(x)$ and $F_3(x)$ are polynomials with integer coefficients and $g_1,g_2,g_3$ are multiplicative functions with modulus less than or equal to $1.$
Moreover, under some assumption on $g_1,g_2,$ we prove that as $x\rightarrow \infty,$
\[\frac{1}{x}\sum_{n\le x}g_1(n+3)g_2(n+2)\mu(n+1)=o(1),\]
and assuming the $2$-point Chowla type conjecture we show that as $x\rightarrow \infty,$
\[\frac{1}{x}\sum_{n\le x}g_1(n+3)\mu(n+2)\mu(n+1)=o(1).\]
Keywords:
asymptotic formula following sum explicit error term frac sum where polynomials integer coefficients multiplicative functions modulus equal nbsp moreover under assumption prove rightarrow infty frac sum assuming point chowla type conjecture rightarrow infty frac sum
Affiliations des auteurs :
Pranendu Darbar 1
@article{10_4064_aa8605_4_2017,
author = {Pranendu Darbar},
title = {Triple correlations of multiplicative functions},
journal = {Acta Arithmetica},
pages = {63--88},
publisher = {mathdoc},
volume = {180},
number = {1},
year = {2017},
doi = {10.4064/aa8605-4-2017},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8605-4-2017/}
}
Pranendu Darbar. Triple correlations of multiplicative functions. Acta Arithmetica, Tome 180 (2017) no. 1, pp. 63-88. doi: 10.4064/aa8605-4-2017
Cité par Sources :