On the Cesàro average of the “Linnik numbers”
Acta Arithmetica, Tome 180 (2017) no. 1, pp. 45-62.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\varLambda$ be the von Mangoldt function and $$ r_{Q}(n)=\sum_{m_{1}+m_{2}^{2}+m_{3}^{2}=n}\varLambda(m_{1}) $$ be the counting function for the numbers that can be written as sum of a prime and two squares (that we will call “Linnik numbers”, for brevity). Let $N$ be a sufficiently large integer. We prove that for $k \gt 3/2$ we have $$ \sum_{n\leq N}r_{Q}(n)\frac{(N-n)^{k}}{\varGamma(k+1)}=M(N,k)+O(N^{k+1}) $$ where $M(N,k)$ is essentially a weighted sum, over non-trivial zeros of the Riemann zeta function, of Bessel functions of complex order and real argument. We also prove that with this technique the bound $k \gt 3/2$ is optimal.
DOI : 10.4064/aa8601-3-2017
Keywords: varlambda von mangoldt function sum varlambda counting function numbers written sum prime squares call linnik numbers brevity sufficiently large integer prove have sum leq frac n n vargamma where essentially weighted sum non trivial zeros riemann zeta function bessel functions complex order real argument prove technique bound optimal

Marco Cantarini 1

1 Università di Ferrara Dipartimento di Matematica e Informatica Via Machiavelli, 30 44121 Ferrara, Italy
@article{10_4064_aa8601_3_2017,
     author = {Marco Cantarini},
     title = {On the {Ces\`aro} average of the {{\textquotedblleft}Linnik} numbers{\textquotedblright}},
     journal = {Acta Arithmetica},
     pages = {45--62},
     publisher = {mathdoc},
     volume = {180},
     number = {1},
     year = {2017},
     doi = {10.4064/aa8601-3-2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8601-3-2017/}
}
TY  - JOUR
AU  - Marco Cantarini
TI  - On the Cesàro average of the “Linnik numbers”
JO  - Acta Arithmetica
PY  - 2017
SP  - 45
EP  - 62
VL  - 180
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8601-3-2017/
DO  - 10.4064/aa8601-3-2017
LA  - en
ID  - 10_4064_aa8601_3_2017
ER  - 
%0 Journal Article
%A Marco Cantarini
%T On the Cesàro average of the “Linnik numbers”
%J Acta Arithmetica
%D 2017
%P 45-62
%V 180
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8601-3-2017/
%R 10.4064/aa8601-3-2017
%G en
%F 10_4064_aa8601_3_2017
Marco Cantarini. On the Cesàro average of the “Linnik numbers”. Acta Arithmetica, Tome 180 (2017) no. 1, pp. 45-62. doi : 10.4064/aa8601-3-2017. http://geodesic.mathdoc.fr/articles/10.4064/aa8601-3-2017/

Cité par Sources :