On the Cesàro average of the “Linnik numbers”
Acta Arithmetica, Tome 180 (2017) no. 1, pp. 45-62
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\varLambda$ be the von Mangoldt function and $$
r_{Q}(n)=\sum_{m_{1}+m_{2}^{2}+m_{3}^{2}=n}\varLambda(m_{1})
$$
be the counting function for the numbers that can be written as sum of
a prime and two squares (that we will call “Linnik numbers”, for
brevity). Let $N$ be a sufficiently large integer. We prove that for
$k \gt 3/2$ we have
$$
\sum_{n\leq N}r_{Q}(n)\frac{(N-n)^{k}}{\varGamma(k+1)}=M(N,k)+O(N^{k+1})
$$ where $M(N,k)$ is essentially a weighted sum, over
non-trivial zeros of the Riemann zeta function, of Bessel functions of
complex order and real argument. We also prove that with this
technique the bound $k \gt 3/2$ is optimal.
Keywords:
varlambda von mangoldt function sum varlambda counting function numbers written sum prime squares call linnik numbers brevity sufficiently large integer prove have sum leq frac n n vargamma where essentially weighted sum non trivial zeros riemann zeta function bessel functions complex order real argument prove technique bound optimal
Affiliations des auteurs :
Marco Cantarini 1
@article{10_4064_aa8601_3_2017,
author = {Marco Cantarini},
title = {On the {Ces\`aro} average of the {{\textquotedblleft}Linnik} numbers{\textquotedblright}},
journal = {Acta Arithmetica},
pages = {45--62},
publisher = {mathdoc},
volume = {180},
number = {1},
year = {2017},
doi = {10.4064/aa8601-3-2017},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8601-3-2017/}
}
Marco Cantarini. On the Cesàro average of the “Linnik numbers”. Acta Arithmetica, Tome 180 (2017) no. 1, pp. 45-62. doi: 10.4064/aa8601-3-2017
Cité par Sources :