Gauss sums, Stickelberger’s theorem and the Gras conjecture for ray class groups
Acta Arithmetica, Tome 178 (2017) no. 3, pp. 273-299
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $k$ be a real abelian number field and $p$ an odd prime not dividing\break $[k:\mathbb{Q}]$. For a natural number $d$, let $E_d$ denote the group of units of $k$ congruent to $1$ modulo $d$, $C_d$ the subgroup of $d$-circular units of $E_d$, and $\mathfrak{C}(d)$ the ray class group of modulus $d$. Let $\rho$ be an irreducible character of $G=\operatorname{Gal}(k/\mathbb{Q})$ over $\mathbb{Q}_p$ and $e_{\rho} \in \mathbb{Z}_p[G]$ the corresponding idempotent. We show that if the ramification index of $p$ in $k$ is less than $p-1$, then $|e_{\rho} \operatorname{Syl}_p(E_d/C_d) | = |e_{\rho} \operatorname{Syl}_p(\mathfrak{C}_d)|$ where $\mathfrak{C}_d$ is the part of $\mathfrak{C}(d)$ where $G$ acts non-trivially. This is a ray class version of the Gras Conjecture. In the case when $p \,|\, [k:\mathbb{Q}]$, similar but slightly less precise results are obtained. In particular, beginning with what could be considered a Gauss sum for real fields, we construct explicit Galois annihilators of $\operatorname{Syl}_p(\mathfrak{C}_{\mathfrak{a}})$ akin to the classical Stickelberger Theorem.
Keywords:
real abelian number field odd prime dividing break mathbb natural number denote group units congruent modulo nbsp subgroup d circular units mathfrak ray class group modulus rho irreducible character operatorname gal mathbb mathbb rho mathbb corresponding idempotent ramification index p rho operatorname syl c rho operatorname syl mathfrak where mathfrak part mathfrak where acts non trivially ray class version gras conjecture mathbb similar slightly precise results obtained particular beginning what could considered gauss sum real fields construct explicit galois annihilators operatorname syl mathfrak mathfrak akin classical stickelberger theorem
Affiliations des auteurs :
Timothy All 1
@article{10_4064_aa8537_2_2017,
author = {Timothy All},
title = {Gauss sums, {Stickelberger{\textquoteright}s} theorem and the {Gras} conjecture for ray class groups},
journal = {Acta Arithmetica},
pages = {273--299},
publisher = {mathdoc},
volume = {178},
number = {3},
year = {2017},
doi = {10.4064/aa8537-2-2017},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8537-2-2017/}
}
TY - JOUR AU - Timothy All TI - Gauss sums, Stickelberger’s theorem and the Gras conjecture for ray class groups JO - Acta Arithmetica PY - 2017 SP - 273 EP - 299 VL - 178 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa8537-2-2017/ DO - 10.4064/aa8537-2-2017 LA - en ID - 10_4064_aa8537_2_2017 ER -
Timothy All. Gauss sums, Stickelberger’s theorem and the Gras conjecture for ray class groups. Acta Arithmetica, Tome 178 (2017) no. 3, pp. 273-299. doi: 10.4064/aa8537-2-2017
Cité par Sources :