On solution-free sets of integers II
Acta Arithmetica, Tome 180 (2017) no. 1, pp. 15-33.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Given a linear equation $\mathcal{L}$, a set $A \subseteq [n]$ is $\mathcal{L}$-free if $A$ does not contain any ‘non-trivial’ solutions to $\mathcal{L}$. We determine the precise size of the largest $\mathcal{L}$-free subset of $[n]$ for several general classes of linear equations $\mathcal{L}$ of the form $px+qy=rz$ for fixed $p,q,r \in \mathbb N$ where $p \geq q \geq r$. Further, for all such linear equations $\mathcal L$, we give an upper bound on the number of maximal $\mathcal{L}$-free subsets of $[n]$. When $p=q\geq 2$ and $r=1$ this bound is exact up to an error term in the exponent. We make use of container and removal lemmas of Green to prove this result. Our results also extend to various linear equations with more than three variables.
DOI : 10.4064/aa8522-6-2017
Keywords: given linear equation mathcal set subseteq mathcal free does contain non trivial solutions mathcal determine precise size largest mathcal free subset several general classes linear equations mathcal form fixed mathbb where geq geq further linear equations mathcal upper bound number maximal mathcal free subsets geq bound exact error term exponent make container removal lemmas green prove result results extend various linear equations three variables

Robert Hancock 1 ; Andrew Treglown 1

1 School of Mathematics University of Birmingham Edgbaston, Birmingham, B15 2TT, UK
@article{10_4064_aa8522_6_2017,
     author = {Robert Hancock and Andrew Treglown},
     title = {On solution-free sets of integers {II}},
     journal = {Acta Arithmetica},
     pages = {15--33},
     publisher = {mathdoc},
     volume = {180},
     number = {1},
     year = {2017},
     doi = {10.4064/aa8522-6-2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8522-6-2017/}
}
TY  - JOUR
AU  - Robert Hancock
AU  - Andrew Treglown
TI  - On solution-free sets of integers II
JO  - Acta Arithmetica
PY  - 2017
SP  - 15
EP  - 33
VL  - 180
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8522-6-2017/
DO  - 10.4064/aa8522-6-2017
LA  - en
ID  - 10_4064_aa8522_6_2017
ER  - 
%0 Journal Article
%A Robert Hancock
%A Andrew Treglown
%T On solution-free sets of integers II
%J Acta Arithmetica
%D 2017
%P 15-33
%V 180
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8522-6-2017/
%R 10.4064/aa8522-6-2017
%G en
%F 10_4064_aa8522_6_2017
Robert Hancock; Andrew Treglown. On solution-free sets of integers II. Acta Arithmetica, Tome 180 (2017) no. 1, pp. 15-33. doi : 10.4064/aa8522-6-2017. http://geodesic.mathdoc.fr/articles/10.4064/aa8522-6-2017/

Cité par Sources :