On solution-free sets of integers II
Acta Arithmetica, Tome 180 (2017) no. 1, pp. 15-33
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Given a linear equation $\mathcal{L}$, a set $A \subseteq [n]$ is $\mathcal{L}$-free if $A$ does not contain any ‘non-trivial’ solutions to $\mathcal{L}$.
We determine the precise size of the largest $\mathcal{L}$-free subset of $[n]$
for several general classes of linear equations $\mathcal{L}$ of the form
$px+qy=rz$ for fixed $p,q,r \in \mathbb N$ where $p \geq q \geq r$.
Further, for all such linear equations $\mathcal L$, we give an upper bound on
the number of maximal $\mathcal{L}$-free subsets of $[n]$.
When $p=q\geq 2$ and $r=1$ this bound is exact up to an error term in the exponent. We make use of container and removal lemmas of Green to prove this result. Our results also extend to various linear equations with more than three variables.
Keywords:
given linear equation mathcal set subseteq mathcal free does contain non trivial solutions mathcal determine precise size largest mathcal free subset several general classes linear equations mathcal form fixed mathbb where geq geq further linear equations mathcal upper bound number maximal mathcal free subsets geq bound exact error term exponent make container removal lemmas green prove result results extend various linear equations three variables
Affiliations des auteurs :
Robert Hancock 1 ; Andrew Treglown 1
@article{10_4064_aa8522_6_2017,
author = {Robert Hancock and Andrew Treglown},
title = {On solution-free sets of integers {II}},
journal = {Acta Arithmetica},
pages = {15--33},
year = {2017},
volume = {180},
number = {1},
doi = {10.4064/aa8522-6-2017},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8522-6-2017/}
}
Robert Hancock; Andrew Treglown. On solution-free sets of integers II. Acta Arithmetica, Tome 180 (2017) no. 1, pp. 15-33. doi: 10.4064/aa8522-6-2017
Cité par Sources :