Sets of bounded remainder for a continuous irrational rotation on $[0,1]^2$
Acta Arithmetica, Tome 176 (2016) no. 4, pp. 365-395.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study sets of bounded remainder for the two-dimensional continuous irrational rotation $(\{x_1+t\}, \{x_2+t\alpha \})_{t \geq 0}$ in the unit square. In particular, we show that for almost all $\alpha$ and every starting point $(x_1, x_2)$, every polygon $S$ with no edge of slope $\alpha$ is a set of bounded remainder. Moreover, every convex set $S$ whose boundary is twice continuously differentiable with positive curvature at every point is a bounded remainder set for almost all $\alpha$ and every starting point $(x_1, x_2)$. Finally we show that these assertions are, in some sense, best possible.
DOI : 10.4064/aa8453-8-2016
Keywords: study sets bounded remainder two dimensional continuous irrational rotation alpha geq unit square particular almost alpha every starting point every polygon edge slope alpha set bounded remainder moreover every convex set whose boundary twice continuously differentiable positive curvature every point bounded remainder set almost alpha every starting point finally these assertions sense best possible

Sigrid Grepstad 1 ; Gerhard Larcher 1

1 Institute of Financial Mathematics and Applied Number Theory Johannes Kepler University Linz Altenbergerstr. 69 A-4040 Linz, Austria
@article{10_4064_aa8453_8_2016,
     author = {Sigrid Grepstad and Gerhard Larcher},
     title = {Sets of bounded remainder for a continuous irrational rotation on $[0,1]^2$},
     journal = {Acta Arithmetica},
     pages = {365--395},
     publisher = {mathdoc},
     volume = {176},
     number = {4},
     year = {2016},
     doi = {10.4064/aa8453-8-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8453-8-2016/}
}
TY  - JOUR
AU  - Sigrid Grepstad
AU  - Gerhard Larcher
TI  - Sets of bounded remainder for a continuous irrational rotation on $[0,1]^2$
JO  - Acta Arithmetica
PY  - 2016
SP  - 365
EP  - 395
VL  - 176
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8453-8-2016/
DO  - 10.4064/aa8453-8-2016
LA  - en
ID  - 10_4064_aa8453_8_2016
ER  - 
%0 Journal Article
%A Sigrid Grepstad
%A Gerhard Larcher
%T Sets of bounded remainder for a continuous irrational rotation on $[0,1]^2$
%J Acta Arithmetica
%D 2016
%P 365-395
%V 176
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8453-8-2016/
%R 10.4064/aa8453-8-2016
%G en
%F 10_4064_aa8453_8_2016
Sigrid Grepstad; Gerhard Larcher. Sets of bounded remainder for a continuous irrational rotation on $[0,1]^2$. Acta Arithmetica, Tome 176 (2016) no. 4, pp. 365-395. doi : 10.4064/aa8453-8-2016. http://geodesic.mathdoc.fr/articles/10.4064/aa8453-8-2016/

Cité par Sources :