Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Sigrid Grepstad 1 ; Gerhard Larcher 1
@article{10_4064_aa8453_8_2016, author = {Sigrid Grepstad and Gerhard Larcher}, title = {Sets of bounded remainder for a continuous irrational rotation on $[0,1]^2$}, journal = {Acta Arithmetica}, pages = {365--395}, publisher = {mathdoc}, volume = {176}, number = {4}, year = {2016}, doi = {10.4064/aa8453-8-2016}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8453-8-2016/} }
TY - JOUR AU - Sigrid Grepstad AU - Gerhard Larcher TI - Sets of bounded remainder for a continuous irrational rotation on $[0,1]^2$ JO - Acta Arithmetica PY - 2016 SP - 365 EP - 395 VL - 176 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa8453-8-2016/ DO - 10.4064/aa8453-8-2016 LA - en ID - 10_4064_aa8453_8_2016 ER -
%0 Journal Article %A Sigrid Grepstad %A Gerhard Larcher %T Sets of bounded remainder for a continuous irrational rotation on $[0,1]^2$ %J Acta Arithmetica %D 2016 %P 365-395 %V 176 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa8453-8-2016/ %R 10.4064/aa8453-8-2016 %G en %F 10_4064_aa8453_8_2016
Sigrid Grepstad; Gerhard Larcher. Sets of bounded remainder for a continuous irrational rotation on $[0,1]^2$. Acta Arithmetica, Tome 176 (2016) no. 4, pp. 365-395. doi : 10.4064/aa8453-8-2016. http://geodesic.mathdoc.fr/articles/10.4064/aa8453-8-2016/
Cité par Sources :