The number of unimodular zeros of self-reciprocal polynomials with coefficients in a finite set
Acta Arithmetica, Tome 176 (2016) no. 2, pp. 177-200.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let ${\rm NZ}(T_n)$ denote the number of real zeros of a trigonometric polynomial $$T_n(t) = \sum_{j=0}^n{a_{j,n} \cos(jt)}, \ \quad a_{j,n} \in {\mathbb C},$$ in a period $[a,a+2\pi)$, $a \in {\mathbb R}$. Let ${\rm NZ}(P_n)$ denote the number of zeros of an algebraic polynomial $$P_n(z) = \sum_{j=0}^n{p_{j,n} z^j}, \ \quad p_{j,n} \in {\mathbb C},$$ that lie on the unit circle of ${\mathbb C}$. Let $$ {\rm NC}_k(P_n) := \Big|\Big\{u: 0 \leq u \leq n-k+1, \, \sum_{j=u}^{u+k-1}{p_{j,n}} \neq 0 \Big\}\Big|.$$ One of the highlights of this paper states that $\lim_{n \rightarrow \infty}{ {\rm NZ}(T_n)} = \infty$ whenever the set $\{a_{j,n}: j \in \{0,1,\ldots,n\}, \, n \in {\mathbb N}\} \subset [0,\infty)$ is finite and $$\lim_{n \rightarrow \infty}{|\{j \in \{0,1,\ldots,n\}:a_{j,n} \neq 0\}|} = \infty.$$ This follows from a more general result stating that $$\lim_{n \rightarrow \infty}{{\rm NZ}(P_{2n})} = \infty$$ whenever $P_{2n}$ is self-reciprocal, the set $\{p_{j,2n}: j \in \{0,1,\ldots,2n\}, \, n \in {\mathbb N}\} \subset {\mathbb R}$ is finite, and $\lim_{n \rightarrow \infty}{{\rm NC}_k(P_{2n})} = \infty$ for every $k \in {\mathbb N}$.
DOI : 10.4064/aa8442-7-2016
Keywords: denote number real zeros trigonometric polynomial sum cos quad mathbb period mathbb denote number zeros algebraic polynomial sum quad mathbb lie unit circle mathbb leq leq n k sum k neq highlights paper states lim rightarrow infty infty whenever set ldots mathbb subset infty finite lim rightarrow infty ldots neq infty follows general result stating lim rightarrow infty infty whenever self reciprocal set ldots mathbb subset mathbb finite lim rightarrow infty infty every mathbb

Tamás Erdélyi 1

1 Department of Mathematics Texas A&M University College Station, TX 77843, U.S.A.
@article{10_4064_aa8442_7_2016,
     author = {Tam\'as Erd\'elyi},
     title = {The number of unimodular zeros of self-reciprocal polynomials with coefficients in a finite set},
     journal = {Acta Arithmetica},
     pages = {177--200},
     publisher = {mathdoc},
     volume = {176},
     number = {2},
     year = {2016},
     doi = {10.4064/aa8442-7-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8442-7-2016/}
}
TY  - JOUR
AU  - Tamás Erdélyi
TI  - The number of unimodular zeros of self-reciprocal polynomials with coefficients in a finite set
JO  - Acta Arithmetica
PY  - 2016
SP  - 177
EP  - 200
VL  - 176
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8442-7-2016/
DO  - 10.4064/aa8442-7-2016
LA  - en
ID  - 10_4064_aa8442_7_2016
ER  - 
%0 Journal Article
%A Tamás Erdélyi
%T The number of unimodular zeros of self-reciprocal polynomials with coefficients in a finite set
%J Acta Arithmetica
%D 2016
%P 177-200
%V 176
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8442-7-2016/
%R 10.4064/aa8442-7-2016
%G en
%F 10_4064_aa8442_7_2016
Tamás Erdélyi. The number of unimodular zeros of self-reciprocal polynomials with coefficients in a finite set. Acta Arithmetica, Tome 176 (2016) no. 2, pp. 177-200. doi : 10.4064/aa8442-7-2016. http://geodesic.mathdoc.fr/articles/10.4064/aa8442-7-2016/

Cité par Sources :