The number of unimodular zeros of self-reciprocal polynomials with coefficients in a finite set
Acta Arithmetica, Tome 176 (2016) no. 2, pp. 177-200
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let ${\rm NZ}(T_n)$ denote the number of real zeros of a trigonometric polynomial
$$T_n(t) = \sum_{j=0}^n{a_{j,n} \cos(jt)}, \ \quad a_{j,n} \in {\mathbb C},$$
in a period $[a,a+2\pi)$, $a \in {\mathbb R}$. Let ${\rm NZ}(P_n)$ denote the number of zeros
of an algebraic polynomial
$$P_n(z) = \sum_{j=0}^n{p_{j,n} z^j}, \ \quad p_{j,n} \in {\mathbb C},$$
that lie on the unit circle of ${\mathbb C}$. Let
$$ {\rm NC}_k(P_n) := \Big|\Big\{u: 0 \leq u \leq n-k+1, \, \sum_{j=u}^{u+k-1}{p_{j,n}} \neq 0 \Big\}\Big|.$$
One of the highlights of this paper states that
$\lim_{n \rightarrow \infty}{ {\rm NZ}(T_n)} = \infty$ whenever the set
$\{a_{j,n}: j \in \{0,1,\ldots,n\}, \, n \in {\mathbb N}\} \subset [0,\infty)$
is finite and
$$\lim_{n \rightarrow \infty}{|\{j \in \{0,1,\ldots,n\}:a_{j,n} \neq 0\}|} = \infty.$$
This follows from a more general result stating that $$\lim_{n \rightarrow \infty}{{\rm NZ}(P_{2n})} = \infty$$
whenever $P_{2n}$ is self-reciprocal, the set
$\{p_{j,2n}: j \in \{0,1,\ldots,2n\}, \, n \in {\mathbb N}\} \subset {\mathbb R}$
is finite, and $\lim_{n \rightarrow \infty}{{\rm NC}_k(P_{2n})} = \infty$ for every $k \in {\mathbb N}$.
Keywords:
denote number real zeros trigonometric polynomial sum cos quad mathbb period mathbb denote number zeros algebraic polynomial sum quad mathbb lie unit circle mathbb leq leq n k sum k neq highlights paper states lim rightarrow infty infty whenever set ldots mathbb subset infty finite lim rightarrow infty ldots neq infty follows general result stating lim rightarrow infty infty whenever self reciprocal set ldots mathbb subset mathbb finite lim rightarrow infty infty every mathbb
Affiliations des auteurs :
Tamás Erdélyi 1
@article{10_4064_aa8442_7_2016,
author = {Tam\'as Erd\'elyi},
title = {The number of unimodular zeros of self-reciprocal polynomials with coefficients in a finite set},
journal = {Acta Arithmetica},
pages = {177--200},
publisher = {mathdoc},
volume = {176},
number = {2},
year = {2016},
doi = {10.4064/aa8442-7-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8442-7-2016/}
}
TY - JOUR AU - Tamás Erdélyi TI - The number of unimodular zeros of self-reciprocal polynomials with coefficients in a finite set JO - Acta Arithmetica PY - 2016 SP - 177 EP - 200 VL - 176 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa8442-7-2016/ DO - 10.4064/aa8442-7-2016 LA - en ID - 10_4064_aa8442_7_2016 ER -
%0 Journal Article %A Tamás Erdélyi %T The number of unimodular zeros of self-reciprocal polynomials with coefficients in a finite set %J Acta Arithmetica %D 2016 %P 177-200 %V 176 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa8442-7-2016/ %R 10.4064/aa8442-7-2016 %G en %F 10_4064_aa8442_7_2016
Tamás Erdélyi. The number of unimodular zeros of self-reciprocal polynomials with coefficients in a finite set. Acta Arithmetica, Tome 176 (2016) no. 2, pp. 177-200. doi: 10.4064/aa8442-7-2016
Cité par Sources :