Group-theoretical independence of $\ell $-adic Galois representations
Acta Arithmetica, Tome 176 (2016) no. 2, pp. 161-176.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $K/\mathbb Q$ be a finitely generated field of characteristic zero and $X/K$ a smooth projective variety. Fix $q\in\mathbb N$. For every prime number $\ell$ let $\rho_\ell$ be the representation of $\operatorname{Gal}(K)$ on the étale cohomology group $H^q(X_{\overline{K}}, \mathbb Q_\ell)$. For a field $k$ we denote by $k_{\rm ab}$ its maximal abelian Galois extension. We prove that there exist finite Galois extensions $k/\mathbb Q$ and $F/K$ such that the restricted family of representations $(\rho_\ell|\operatorname{Gal}(k_{\rm ab} F))_\ell$ is group-theoretically independent in the sense that $\rho_{\ell_1}(\operatorname{Gal}(k_{\rm ab} F))$ and $\rho_{\ell_2}(\operatorname{Gal}(k_{\rm ab} F))$ do not have a common finite simple quotient group for all prime numbers $\ell_1\neq \ell_2$.
DOI : 10.4064/aa8438-7-2016
Keywords: mathbb finitely generated field characteristic zero smooth projective variety fix mathbb every prime number ell rho ell representation operatorname gal tale cohomology group overline mathbb ell field denote its maximal abelian galois extension prove there exist finite galois extensions mathbb restricted family representations rho ell operatorname gal ell group theoretically independent sense rho ell operatorname gal rho ell operatorname gal have common finite simple quotient group prime numbers ell neq ell

Sebastian Petersen 1

1 Fachbereich für Mathematik und Naturwissenschaften Universität Kassel Wilhelmshöher Allee 73 34121 Kassel, Germany
@article{10_4064_aa8438_7_2016,
     author = {Sebastian Petersen},
     title = {Group-theoretical independence of $\ell $-adic {Galois} representations},
     journal = {Acta Arithmetica},
     pages = {161--176},
     publisher = {mathdoc},
     volume = {176},
     number = {2},
     year = {2016},
     doi = {10.4064/aa8438-7-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8438-7-2016/}
}
TY  - JOUR
AU  - Sebastian Petersen
TI  - Group-theoretical independence of $\ell $-adic Galois representations
JO  - Acta Arithmetica
PY  - 2016
SP  - 161
EP  - 176
VL  - 176
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8438-7-2016/
DO  - 10.4064/aa8438-7-2016
LA  - en
ID  - 10_4064_aa8438_7_2016
ER  - 
%0 Journal Article
%A Sebastian Petersen
%T Group-theoretical independence of $\ell $-adic Galois representations
%J Acta Arithmetica
%D 2016
%P 161-176
%V 176
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8438-7-2016/
%R 10.4064/aa8438-7-2016
%G en
%F 10_4064_aa8438_7_2016
Sebastian Petersen. Group-theoretical independence of $\ell $-adic Galois representations. Acta Arithmetica, Tome 176 (2016) no. 2, pp. 161-176. doi : 10.4064/aa8438-7-2016. http://geodesic.mathdoc.fr/articles/10.4064/aa8438-7-2016/

Cité par Sources :