Group-theoretical independence of $\ell $-adic Galois representations
Acta Arithmetica, Tome 176 (2016) no. 2, pp. 161-176
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $K/\mathbb Q$ be a finitely generated field of characteristic zero and $X/K$ a smooth projective variety. Fix $q\in\mathbb N$. For every prime number $\ell$ let $\rho_\ell$ be the representation of $\operatorname{Gal}(K)$ on the étale cohomology group
$H^q(X_{\overline{K}}, \mathbb Q_\ell)$. For a field $k$ we denote by $k_{\rm ab}$ its maximal abelian Galois extension. We prove that there exist finite Galois extensions $k/\mathbb Q$ and $F/K$ such that the restricted family of representations $(\rho_\ell|\operatorname{Gal}(k_{\rm ab} F))_\ell$ is group-theoretically
independent in the sense that $\rho_{\ell_1}(\operatorname{Gal}(k_{\rm ab} F))$ and $\rho_{\ell_2}(\operatorname{Gal}(k_{\rm ab} F))$ do not have a common finite simple quotient group for all prime numbers $\ell_1\neq \ell_2$.
Keywords:
mathbb finitely generated field characteristic zero smooth projective variety fix mathbb every prime number ell rho ell representation operatorname gal tale cohomology group overline mathbb ell field denote its maximal abelian galois extension prove there exist finite galois extensions mathbb restricted family representations rho ell operatorname gal ell group theoretically independent sense rho ell operatorname gal rho ell operatorname gal have common finite simple quotient group prime numbers ell neq ell
Affiliations des auteurs :
Sebastian Petersen 1
@article{10_4064_aa8438_7_2016,
author = {Sebastian Petersen},
title = {Group-theoretical independence of $\ell $-adic {Galois} representations},
journal = {Acta Arithmetica},
pages = {161--176},
publisher = {mathdoc},
volume = {176},
number = {2},
year = {2016},
doi = {10.4064/aa8438-7-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8438-7-2016/}
}
TY - JOUR AU - Sebastian Petersen TI - Group-theoretical independence of $\ell $-adic Galois representations JO - Acta Arithmetica PY - 2016 SP - 161 EP - 176 VL - 176 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa8438-7-2016/ DO - 10.4064/aa8438-7-2016 LA - en ID - 10_4064_aa8438_7_2016 ER -
Sebastian Petersen. Group-theoretical independence of $\ell $-adic Galois representations. Acta Arithmetica, Tome 176 (2016) no. 2, pp. 161-176. doi: 10.4064/aa8438-7-2016
Cité par Sources :