Small prime solutions to linear equations in three variables
Acta Arithmetica, Tome 178 (2017) no. 1, pp. 57-76
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $a_1,a_2,a_3$ be nonzero integers and $b$ be any integer satisfying $b\equiv a_1+a_2+a_3\pmod{2}$ and $(b,a_i,a_j)=1$ for $1\le i \lt j\le 3$. Suppose $(a_1,a_2,a_3)=1$ and $A=\max{\{| a_1|,| a_2|,| a_3|\}}$. We obtain the following improved bounds for small prime solutions of the equation $a_1p_1+a_2p_2+a_3p_3=b$:
(i) if not all of $a_1,a_2,a_3$ have the same sign, then there exist prime solutions satisfying $\max_{1\le j\le 3}| a_j| p_j\ll| b|+A^{25}$;
(ii) if $a_1,a_2,a_3$ are all positive, then the equation $a_1p_1+a_2p_2+a_3p_3=b$ is solvable for $b\gg A^{25}$.
Keywords:
nonzero integers integer satisfying equiv pmod a suppose max obtain following improved bounds small prime solutions equation have sign there exist prime solutions satisfying max positive equation solvable
Affiliations des auteurs :
Tak Wing Ching 1 ; Kai Man Tsang 1
@article{10_4064_aa8427_8_2016,
author = {Tak Wing Ching and Kai Man Tsang},
title = {Small prime solutions to linear equations in three variables},
journal = {Acta Arithmetica},
pages = {57--76},
publisher = {mathdoc},
volume = {178},
number = {1},
year = {2017},
doi = {10.4064/aa8427-8-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8427-8-2016/}
}
TY - JOUR AU - Tak Wing Ching AU - Kai Man Tsang TI - Small prime solutions to linear equations in three variables JO - Acta Arithmetica PY - 2017 SP - 57 EP - 76 VL - 178 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa8427-8-2016/ DO - 10.4064/aa8427-8-2016 LA - en ID - 10_4064_aa8427_8_2016 ER -
Tak Wing Ching; Kai Man Tsang. Small prime solutions to linear equations in three variables. Acta Arithmetica, Tome 178 (2017) no. 1, pp. 57-76. doi: 10.4064/aa8427-8-2016
Cité par Sources :