Small prime solutions to linear equations in three variables
Acta Arithmetica, Tome 178 (2017) no. 1, pp. 57-76.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $a_1,a_2,a_3$ be nonzero integers and $b$ be any integer satisfying $b\equiv a_1+a_2+a_3\pmod{2}$ and $(b,a_i,a_j)=1$ for $1\le i \lt j\le 3$. Suppose $(a_1,a_2,a_3)=1$ and $A=\max{\{| a_1|,| a_2|,| a_3|\}}$. We obtain the following improved bounds for small prime solutions of the equation $a_1p_1+a_2p_2+a_3p_3=b$: (i) if not all of $a_1,a_2,a_3$ have the same sign, then there exist prime solutions satisfying $\max_{1\le j\le 3}| a_j| p_j\ll| b|+A^{25}$; (ii) if $a_1,a_2,a_3$ are all positive, then the equation $a_1p_1+a_2p_2+a_3p_3=b$ is solvable for $b\gg A^{25}$.
DOI : 10.4064/aa8427-8-2016
Keywords: nonzero integers integer satisfying equiv pmod a suppose max obtain following improved bounds small prime solutions equation have sign there exist prime solutions satisfying max positive equation solvable

Tak Wing Ching 1 ; Kai Man Tsang 1

1 Department of Mathematics The University of Hong Kong Pokfulam Road, Hong Kong
@article{10_4064_aa8427_8_2016,
     author = {Tak Wing Ching and Kai Man Tsang},
     title = {Small prime solutions to linear equations in three variables},
     journal = {Acta Arithmetica},
     pages = {57--76},
     publisher = {mathdoc},
     volume = {178},
     number = {1},
     year = {2017},
     doi = {10.4064/aa8427-8-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8427-8-2016/}
}
TY  - JOUR
AU  - Tak Wing Ching
AU  - Kai Man Tsang
TI  - Small prime solutions to linear equations in three variables
JO  - Acta Arithmetica
PY  - 2017
SP  - 57
EP  - 76
VL  - 178
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8427-8-2016/
DO  - 10.4064/aa8427-8-2016
LA  - en
ID  - 10_4064_aa8427_8_2016
ER  - 
%0 Journal Article
%A Tak Wing Ching
%A Kai Man Tsang
%T Small prime solutions to linear equations in three variables
%J Acta Arithmetica
%D 2017
%P 57-76
%V 178
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8427-8-2016/
%R 10.4064/aa8427-8-2016
%G en
%F 10_4064_aa8427_8_2016
Tak Wing Ching; Kai Man Tsang. Small prime solutions to linear equations in three variables. Acta Arithmetica, Tome 178 (2017) no. 1, pp. 57-76. doi : 10.4064/aa8427-8-2016. http://geodesic.mathdoc.fr/articles/10.4064/aa8427-8-2016/

Cité par Sources :