Some relations between $t(a,b,c,d;n)$ and $N(a,b,c,d;n)$
Acta Arithmetica, Tome 175 (2016) no. 3, pp. 269-289
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For given positive integers $a,b,c,d$ and $n$
let $N(a,b,c,d;n)$ be the number of representations of $n$ as $ax^2+by^2+cz^2+dw^2$, and let $t(a,b,c,d;n)$ be the number of representations of $n$ as $ax(x-1)/2+by(y-1)/2+cz(z-1)/2 +dw(w-1)/2$ $(x,y,z,w\in\Bbb Z$). By using Ramanujan’s theta functions we reveal some connections
between $t(a,b,c,d;n)$ and $N(a,b,c,d;n)$.
Keywords:
given positive integers d c number representations c number representations x y z w w bbb using ramanujan theta functions reveal connections between c c
Affiliations des auteurs :
Zhi-Hong Sun 1
@article{10_4064_aa8418_5_2016,
author = {Zhi-Hong Sun},
title = {Some relations between $t(a,b,c,d;n)$ and $N(a,b,c,d;n)$},
journal = {Acta Arithmetica},
pages = {269--289},
publisher = {mathdoc},
volume = {175},
number = {3},
year = {2016},
doi = {10.4064/aa8418-5-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8418-5-2016/}
}
Zhi-Hong Sun. Some relations between $t(a,b,c,d;n)$ and $N(a,b,c,d;n)$. Acta Arithmetica, Tome 175 (2016) no. 3, pp. 269-289. doi: 10.4064/aa8418-5-2016
Cité par Sources :