On decompositions of quadrinomials and related Diophantine equations
Acta Arithmetica, Tome 179 (2017) no. 1, pp. 1-15
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $A,B,C,D$ be non-zero rational numbers, and let $n_1,n_2,n_3$ be distinct positive integers. We solve the equation
\begin{equation*} Ax^{n_1}+Bx^{n_2}+Cx^{n_3}+D = f(g(x))
\end{equation*}
in $f,g \in \mathbb{Q}[x]$. Then we use the Bilu–Tichy method to prove that the equation
\begin{equation*}
Ax^{n_1}+Bx^{n_2}+Cx^{n_3}+D = Ey^{m_1}+Fy^{m_2}+Gy^{m_3}+H
\end{equation*}
has finitely many integral solutions where $A,B,C,D,E,F,G,H$ are non-zero rational numbers and $(n_1,n_2,n_3)$, $(m_1,m_2,m_3)$ are different triples of distinct positive integers such that $\gcd(n_1,n_2,n_3) = \gcd(m_1,m_2,m_3)=1$
and $n_1,m_1 \geq 9$. We establish the same result for the equation
\begin{equation*} A_1x^{n_1}+A_2x^{n_2}+\cdots+A_l x^{n_l} + A_{l+1} = Ey^{m_1}+Fy^{m_2}+Gy^{m_3},
\end{equation*}
where $l \geq 4$ is a fixed integer, $A_1,\ldots,A_{l+1},E,F,G$ are rational numbers, non-zero except possibly for $A_{l+1}$,
and $n_1,\ldots,n_l$ and $m_1,m_2,m_3$ are sequences of distinct positive integers such that $\gcd(n_1, \ldots n_l) = \gcd(m_1,m_2,m_3)=1$ and $n_1 \gt 2l$, $m_1 \geq 2l(l-1)$.
Keywords:
d non zero rational numbers distinct positive integers solve equation begin equation* end equation* mathbb bilu tichy method prove equation begin equation* end equation* has finitely many integral solutions where d h non zero rational numbers different triples distinct positive integers gcd gcd geq establish result equation begin equation* cdots end equation* where geq fixed integer ldots rational numbers non zero except possibly ldots sequences distinct positive integers gcd ldots gcd geq l
Affiliations des auteurs :
Maciej Gawron 1
@article{10_4064_aa8411_9_2016,
author = {Maciej Gawron},
title = {On decompositions of quadrinomials and related {Diophantine} equations},
journal = {Acta Arithmetica},
pages = {1--15},
year = {2017},
volume = {179},
number = {1},
doi = {10.4064/aa8411-9-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8411-9-2016/}
}
Maciej Gawron. On decompositions of quadrinomials and related Diophantine equations. Acta Arithmetica, Tome 179 (2017) no. 1, pp. 1-15. doi: 10.4064/aa8411-9-2016
Cité par Sources :