On decompositions of quadrinomials and related Diophantine equations
Acta Arithmetica, Tome 179 (2017) no. 1, pp. 1-15.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $A,B,C,D$ be non-zero rational numbers, and let $n_1,n_2,n_3$ be distinct positive integers. We solve the equation \begin{equation*} Ax^{n_1}+Bx^{n_2}+Cx^{n_3}+D = f(g(x)) \end{equation*} in $f,g \in \mathbb{Q}[x]$. Then we use the Bilu–Tichy method to prove that the equation \begin{equation*} Ax^{n_1}+Bx^{n_2}+Cx^{n_3}+D = Ey^{m_1}+Fy^{m_2}+Gy^{m_3}+H \end{equation*} has finitely many integral solutions where $A,B,C,D,E,F,G,H$ are non-zero rational numbers and $(n_1,n_2,n_3)$, $(m_1,m_2,m_3)$ are different triples of distinct positive integers such that $\gcd(n_1,n_2,n_3) = \gcd(m_1,m_2,m_3)=1$ and $n_1,m_1 \geq 9$. We establish the same result for the equation \begin{equation*} A_1x^{n_1}+A_2x^{n_2}+\cdots+A_l x^{n_l} + A_{l+1} = Ey^{m_1}+Fy^{m_2}+Gy^{m_3}, \end{equation*} where $l \geq 4$ is a fixed integer, $A_1,\ldots,A_{l+1},E,F,G$ are rational numbers, non-zero except possibly for $A_{l+1}$, and $n_1,\ldots,n_l$ and $m_1,m_2,m_3$ are sequences of distinct positive integers such that $\gcd(n_1, \ldots n_l) = \gcd(m_1,m_2,m_3)=1$ and $n_1 \gt 2l$, $m_1 \geq 2l(l-1)$.
DOI : 10.4064/aa8411-9-2016
Keywords: d non zero rational numbers distinct positive integers solve equation begin equation* end equation* mathbb bilu tichy method prove equation begin equation* end equation* has finitely many integral solutions where d h non zero rational numbers different triples distinct positive integers gcd gcd geq establish result equation begin equation* cdots end equation* where geq fixed integer ldots rational numbers non zero except possibly ldots sequences distinct positive integers gcd ldots gcd geq l

Maciej Gawron 1

1 Institute of Mathematics Jagiellonian University Łojasiewicza 6 30-348 Kraków, Poland
@article{10_4064_aa8411_9_2016,
     author = {Maciej Gawron},
     title = {On decompositions of quadrinomials and related {Diophantine} equations},
     journal = {Acta Arithmetica},
     pages = {1--15},
     publisher = {mathdoc},
     volume = {179},
     number = {1},
     year = {2017},
     doi = {10.4064/aa8411-9-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8411-9-2016/}
}
TY  - JOUR
AU  - Maciej Gawron
TI  - On decompositions of quadrinomials and related Diophantine equations
JO  - Acta Arithmetica
PY  - 2017
SP  - 1
EP  - 15
VL  - 179
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8411-9-2016/
DO  - 10.4064/aa8411-9-2016
LA  - en
ID  - 10_4064_aa8411_9_2016
ER  - 
%0 Journal Article
%A Maciej Gawron
%T On decompositions of quadrinomials and related Diophantine equations
%J Acta Arithmetica
%D 2017
%P 1-15
%V 179
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8411-9-2016/
%R 10.4064/aa8411-9-2016
%G en
%F 10_4064_aa8411_9_2016
Maciej Gawron. On decompositions of quadrinomials and related Diophantine equations. Acta Arithmetica, Tome 179 (2017) no. 1, pp. 1-15. doi : 10.4064/aa8411-9-2016. http://geodesic.mathdoc.fr/articles/10.4064/aa8411-9-2016/

Cité par Sources :