Salem numbers as Mahler measures of nonreciprocal units
Acta Arithmetica, Tome 176 (2016) no. 1, pp. 81-88
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that for $d=4$ and for each $d=4\ell+2$, where $\ell \in \mathbb N$, there are Salem numbers of degree $d$ which belong to the set of nonreciprocal Mahler measures $L_0$. In passing, we show that for every odd $n$ there exist Salem polynomials $f$ of degree $d=2n$ whose Galois group is isomorphic to $\mathbb Z_2^{n-1}\rtimes G_g$, where $G_g$ is the Galois group of the trace polynomial $g$ of $f$. The first result addresses a corresponding question of Boyd, whereas the second result is related to and in some sense completes an earlier result of
Christopoulos and McKee.
Keywords:
each ell where ell mathbb there salem numbers degree which belong set nonreciprocal mahler measures passing every odd there exist salem polynomials degree whose galois group isomorphic mathbb n rtimes where galois group trace polynomial nbsp first result addresses corresponding question boyd whereas second result related sense completes earlier result christopoulos mckee
Affiliations des auteurs :
Artūras Dubickas 1
@article{10_4064_aa8407_8_2016,
author = {Art\={u}ras Dubickas},
title = {Salem numbers as {Mahler} measures of nonreciprocal units},
journal = {Acta Arithmetica},
pages = {81--88},
publisher = {mathdoc},
volume = {176},
number = {1},
year = {2016},
doi = {10.4064/aa8407-8-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8407-8-2016/}
}
TY - JOUR AU - Artūras Dubickas TI - Salem numbers as Mahler measures of nonreciprocal units JO - Acta Arithmetica PY - 2016 SP - 81 EP - 88 VL - 176 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa8407-8-2016/ DO - 10.4064/aa8407-8-2016 LA - en ID - 10_4064_aa8407_8_2016 ER -
Artūras Dubickas. Salem numbers as Mahler measures of nonreciprocal units. Acta Arithmetica, Tome 176 (2016) no. 1, pp. 81-88. doi: 10.4064/aa8407-8-2016
Cité par Sources :