Salem numbers as Mahler measures of nonreciprocal units
Acta Arithmetica, Tome 176 (2016) no. 1, pp. 81-88.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that for $d=4$ and for each $d=4\ell+2$, where $\ell \in \mathbb N$, there are Salem numbers of degree $d$ which belong to the set of nonreciprocal Mahler measures $L_0$. In passing, we show that for every odd $n$ there exist Salem polynomials $f$ of degree $d=2n$ whose Galois group is isomorphic to $\mathbb Z_2^{n-1}\rtimes G_g$, where $G_g$ is the Galois group of the trace polynomial $g$ of $f$. The first result addresses a corresponding question of Boyd, whereas the second result is related to and in some sense completes an earlier result of Christopoulos and McKee.
DOI : 10.4064/aa8407-8-2016
Keywords: each ell where ell mathbb there salem numbers degree which belong set nonreciprocal mahler measures passing every odd there exist salem polynomials degree whose galois group isomorphic mathbb n rtimes where galois group trace polynomial nbsp first result addresses corresponding question boyd whereas second result related sense completes earlier result christopoulos mckee

Artūras Dubickas 1

1 Department of Mathematics and Informatics Vilnius University Naugarduko 24 Vilnius LT-03225, Lithuania
@article{10_4064_aa8407_8_2016,
     author = {Art\={u}ras Dubickas},
     title = {Salem numbers as {Mahler} measures of nonreciprocal units},
     journal = {Acta Arithmetica},
     pages = {81--88},
     publisher = {mathdoc},
     volume = {176},
     number = {1},
     year = {2016},
     doi = {10.4064/aa8407-8-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8407-8-2016/}
}
TY  - JOUR
AU  - Artūras Dubickas
TI  - Salem numbers as Mahler measures of nonreciprocal units
JO  - Acta Arithmetica
PY  - 2016
SP  - 81
EP  - 88
VL  - 176
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8407-8-2016/
DO  - 10.4064/aa8407-8-2016
LA  - en
ID  - 10_4064_aa8407_8_2016
ER  - 
%0 Journal Article
%A Artūras Dubickas
%T Salem numbers as Mahler measures of nonreciprocal units
%J Acta Arithmetica
%D 2016
%P 81-88
%V 176
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8407-8-2016/
%R 10.4064/aa8407-8-2016
%G en
%F 10_4064_aa8407_8_2016
Artūras Dubickas. Salem numbers as Mahler measures of nonreciprocal units. Acta Arithmetica, Tome 176 (2016) no. 1, pp. 81-88. doi : 10.4064/aa8407-8-2016. http://geodesic.mathdoc.fr/articles/10.4064/aa8407-8-2016/

Cité par Sources :