Polynomials meeting Ax's bound
Acta Arithmetica, Tome 176 (2016) no. 1, pp. 65-80
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $f\in\Bbb F_q[X_1,\dots,X_n]$ with $\mathop{\rm deg} f=d \gt 0$ and let $Z(f)=\{(x_1,\dots,x_n)\in \Bbb F_q^n: f(x_1,\dots,x_n)=0\}$. Ax’s theorem states that $|Z(f)|\equiv 0\pmod {q^{\lceil n/d\rceil-1}}$, that is, $\nu_p(|Z(f)|)\ge m(\lceil n/d\rceil-1)$, where $p=\mathop{\rm char} \Bbb F_q$, $q=p^m$, and $\nu_p$ is the $p$-adic valuation. In this paper, we determine a condition on the coefficients of $f$ that is necessary and sufficient for $f$ to meet Ax’s bound, that is,
$\nu_p(|Z(f)|)=m(\lceil n/d\rceil-1)$. Let $R_q(d,n)$ denote the $q$-ary Reed–Muller code $\{f\in\Bbb F_q[X_1,\dots,X_n]: \mathop{\rm deg} f\le d,\, \mathop{\rm deg}_{X_j}f\le q-1$, $1\le j\le n\}$, and let $N_q(d,n;t)$ be the number of codewords of $R_q(d,n)$ with weight divisible by $p^t$.
As applications of the aforementioned result, we find explicit formulas for $N_q(d,n;t)$ in the following cases: (i) $q=2^m$, $n$ even, $d=n/2$, $t=m+1$; (ii) $q=2$, $n/2\le d\le n-2$, $t=2$; (iii) $q=3^m$, $d=n$, $t=1$; (iv) $q=3$, $n\le d\le 2n$, $t=1$.
Keywords:
bbb dots mathop deg dots bbb dots theorem states equiv pmod lceil rceil lceil rceil where mathop char bbb p adic valuation paper determine condition coefficients necessary sufficient meet bound lceil rceil n denote q ary reed muller code bbb dots mathop deg mathop deg q n number codewords n weight divisible applications aforementioned result explicit formulas n following cases nbsp even nbsp n iii nbsp nbsp
Affiliations des auteurs :
Xiang-dong Hou 1
@article{10_4064_aa8405_7_2016,
author = {Xiang-dong Hou},
title = {Polynomials meeting {Ax's} bound},
journal = {Acta Arithmetica},
pages = {65--80},
publisher = {mathdoc},
volume = {176},
number = {1},
year = {2016},
doi = {10.4064/aa8405-7-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8405-7-2016/}
}
Xiang-dong Hou. Polynomials meeting Ax's bound. Acta Arithmetica, Tome 176 (2016) no. 1, pp. 65-80. doi: 10.4064/aa8405-7-2016
Cité par Sources :