$S$-exponential numbers
Acta Arithmetica, Tome 175 (2016) no. 4, pp. 385-395.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that, for every set $S$ of positive integers containing 1 (finite or infinite), the density $h(E(S))$ of the set $E(S)$ of numbers that have prime factorizations with exponents only from $S$ exists, and we give an explicit formula for it. Further, we study the set of such densities for all $S$ and prove that it is a perfect set with a countable set of gaps which are some left-sided neighborhoods of the densities corresponding to all finite $S$ except for $S=\{1\}.$
DOI : 10.4064/aa8395-5-2016
Keywords: prove every set positive integers containing finite infinite density set numbers have prime factorizations exponents only exists explicit formula further study set densities prove perfect set countable set gaps which left sided neighborhoods densities corresponding finite except

Vladimir Shevelev 1

1 Department of Mathematics Ben-Gurion University of the Negev Beer-Sheva 84105, Israel
@article{10_4064_aa8395_5_2016,
     author = {Vladimir Shevelev},
     title = {$S$-exponential numbers},
     journal = {Acta Arithmetica},
     pages = {385--395},
     publisher = {mathdoc},
     volume = {175},
     number = {4},
     year = {2016},
     doi = {10.4064/aa8395-5-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8395-5-2016/}
}
TY  - JOUR
AU  - Vladimir Shevelev
TI  - $S$-exponential numbers
JO  - Acta Arithmetica
PY  - 2016
SP  - 385
EP  - 395
VL  - 175
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8395-5-2016/
DO  - 10.4064/aa8395-5-2016
LA  - en
ID  - 10_4064_aa8395_5_2016
ER  - 
%0 Journal Article
%A Vladimir Shevelev
%T $S$-exponential numbers
%J Acta Arithmetica
%D 2016
%P 385-395
%V 175
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8395-5-2016/
%R 10.4064/aa8395-5-2016
%G en
%F 10_4064_aa8395_5_2016
Vladimir Shevelev. $S$-exponential numbers. Acta Arithmetica, Tome 175 (2016) no. 4, pp. 385-395. doi : 10.4064/aa8395-5-2016. http://geodesic.mathdoc.fr/articles/10.4064/aa8395-5-2016/

Cité par Sources :